I. Calculate the following partial derivatives.
(15)

1. f_{v} if $f(u, v)=\tan ^{-1}\left(\frac{u}{v}\right)$
2. $\frac{\partial R}{\partial R_{2}}$ if $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
3. $\frac{\partial^{2} w}{\partial r \partial \theta}$ if $w=\cos (r \theta)$
II. On an $x y$-coordinate system, draw a rough map of Oklahoma with Norman at the origin (0,0). Assume (5) that the wind is blowing from southwest to northeast. Let $P(x, y)$ be the air pressure function. Draw some level curves of P, and draw some of the gradient vectors ∇P.
III. Calculate the following partial derivatives.
(10)
4. $\frac{\partial z}{\partial \theta}$ if $z=f(x, y)$ (where θ is the polar angle coordinate). Express the final answer without using r and θ.
5. $g^{\prime}(h)$ if $f(x, y)$ is a function of x and $y,\left(x_{0}, y_{0}\right)$ is a certain pint in the domain of f, and $g(h)=f\left(x_{0}+\right.$ $\left.a h, y_{0}+b h\right)$
IV. For the function $g(x, y)=e^{x} \cos (y)$, calculate the following. (9)
6. The gradient ∇g.
7. The directional derivative of g at the point $(2, \pi / 6)$ in the direction of the vector $2 \vec{\imath}-\vec{\jmath}$.
8. The maximum rate of change of f at the point $(2, \pi / 6)$ and the direction in which it occurs.
(4) Show that $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z+z x}{x^{2}+y^{2}+z^{2}}$ does not exist.
VI. Suppose that $g(x, y)$ be a function of two variables. Define what it means to say that (a, b) is a critical (3) point of g.
VII. Consider the function $f(x, y)=2 x^{3}+y^{4}$ with domain the unit disc D consisting of all points (x, y) with
(5) $\quad x^{2}+y^{2} \leq 1$. Determine all critical points of f. Write an expression for the values of f on the boundary of D as a function of a single variable, but do not try to find the maximum value.
