Mathematics 2443-004
Examination III Form A
April 17, 2000

Name (please print)

Student Number
I. Let C be the portion of the circle of radius 3 from $(3,0)$ to $(0,3)$, oriented counterclockwise. (11)

1. Write a parameterization of C.
2. Evaluate $\int_{C} x \vec{\imath} \cdot d \vec{r}$, by direct calculation from the definition of $\int_{C} \vec{F} \cdot d \vec{r}$.
3. Evaluate $\int_{C} x \vec{\imath} \cdot d \vec{r}$, using the Fundamental Theorem for Line Integrals.
II. Suppose that \vec{F} is a vector field on a 3-dimensional domain. For each of the following, state whether the (6) expression represents a scalar field (i. e. a function), a vector field, or is meaningless.
4. $\operatorname{div}(\operatorname{div}(\vec{F}))$
5. $\operatorname{curl}(\operatorname{curl}(\vec{F}))$
6. $\operatorname{curl}(\operatorname{div}(\vec{F}))$
7. $\operatorname{div}(\operatorname{curl}(\vec{F}))$
III. For the vector field $\vec{F}=\cos (x) \vec{\imath}+\sin (z) \vec{\jmath}+\tan (y) \vec{k}$, calculate $\operatorname{div}(\vec{F})$ and $\operatorname{curl}(\vec{F})$.
IV. Use Green's Theorem to calculate $\int_{C_{2}} x y d x+x^{2} d y$, where C consists of the line segment from $(-3,0)$ to (7) $(3,0)$ and the top half of the circle $x^{2}+y^{2}=9$. (Hint: $d A=r d r d \theta$.)
V. The coordinate systems below show the circles of radius $1 / 2,1$, and 2 centered at the origin. For each of (6) the following vector fields, sketch enough of the vectors on these circles to indicate what the vector field is like.
8. $x \vec{\imath}+y \vec{\jmath}$

9. $-y \vec{\imath}+x \vec{\jmath} \quad$ (Hint: $(x \vec{\imath}+y \vec{\jmath}) \cdot(-y \vec{\imath}+x \vec{\jmath})=0$.

VI. Let R be a region in the plane. Define what it means to say that R is simply-connected. Explain how the (6) definition shows that the region given in polar coordinates by $1<r<2$ is not simply-connected.
VII. The equations $x=a \sin (\phi) \cos (\theta), y=a \sin (\phi) \sin (\theta), z=a \cos (\phi)$ give a parametric representation of the (7) \quad sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
10. Calculate r_{θ}.
11. On this picture of the sphere, label the lines where θ is constant, and those where ϕ is constant. Draw some of the vectors \vec{r}_{ϕ} and \vec{r}_{θ}, and also some of the vectors $\vec{r}_{\phi} \times \vec{r}_{\theta}$.

