- I. Let C be the portion of the circle of radius 3 from (3,0) to (0,3), oriented counterclockwise. (11) 1. Write a parameterization of C
 - 1. Write a parameterization of C.

2. Evaluate $\int_C x\vec{i} \cdot d\vec{r}$, by direct calculation from the definition of $\int_C \vec{F} \cdot d\vec{r}$.

3. Evaluate $\int_C x\vec{i} \cdot d\vec{r}$, using the Fundamental Theorem for Line Integrals.

- **II**. Suppose that \vec{F} is a vector field on a 3-dimensional domain. For each of the following, state whether the (6) expression represents a scalar field (i. e. a function), a vector field, or is meaningless.
 - 1. $\operatorname{div}(\operatorname{div}(\vec{F}))$
 - 2. $\operatorname{curl}(\operatorname{curl}(\vec{F}))$
 - 3. $\operatorname{curl}(\operatorname{div}(\vec{F}))$
 - 4. $\operatorname{div}(\operatorname{curl}(\vec{F}))$

For the vector field $\vec{F} = \cos(x)\vec{i} + \sin(z)\vec{j} + \tan(y)\vec{k}$, calculate $\operatorname{div}(\vec{F})$ and $\operatorname{curl}(\vec{F})$. III. (7)

- Use Green's Theorem to calculate $\int_C xy \, dx + x^2 \, dy$, where C consists of the line segment from (-3, 0) to (3, 0) and the top half of the circle $x^2 + y^2 = 9$. (Hint: $dA = r \, dr \, d\theta$.) \mathbf{IV} .
- (7)

- \mathbf{V} . The coordinate systems below show the circles of radius 1/2, 1, and 2 centered at the origin. For each of
- (6) the following vector fields, sketch enough of the vectors on these circles to indicate what the vector field is like.
 - 1. $x\vec{\imath} + y\vec{\jmath}$

2. $-y\vec{\imath} + x\vec{\jmath}$ (Hint: $(x\vec{\imath} + y\vec{\jmath}) \cdot (-y\vec{\imath} + x\vec{\jmath}) = 0$.)

- **VI**. Let R be a region in the plane. Define what it means to say that R is *simply-connected*. Explain how the
- (6) definition shows that the region given in polar coordinates by 1 < r < 2 is not simply-connected.

- **VII.** The equations $x = a \sin(\phi) \cos(\theta)$, $y = a \sin(\phi) \sin(\theta)$, $z = a \cos(\phi)$ give a parametric representation of the (7) sphere $x^2 + y^2 + z^2 = a^2$.
 - 1. Calculate r_{θ} .
 - 2. On this picture of the sphere, label the lines where θ is constant, and those where ϕ is constant. Draw some of the vectors \vec{r}_{ϕ} and \vec{r}_{θ} , and also some of the vectors $\vec{r}_{\phi} \times \vec{r}_{\theta}$.

