Mathematics 2443-004	Name (please print)
Examination III Form B	Student Number
April 17, 2000	Student Number

- I. Let C be the portion of the circle of radius 2 from (2,0) to (0,2), oriented counterclockwise. (11)
 - 1. Write a parameterization of C.

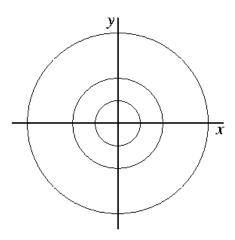
2. Evaluate $\int_C x \vec{i} \cdot d\vec{r}$, by direct calculation from the definition of $\int_C \vec{F} \cdot d\vec{r}$.

3. Evaluate $\int_C x \vec{\imath} \cdot d\vec{r}$, using the Fundamental Theorem for Line Integrals.

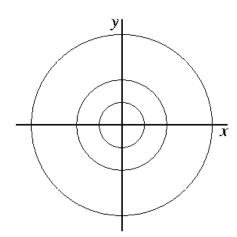
- II. Suppose that \vec{F} is a vector field on a 3-dimensional domain. For each of the following, state whether the expression represents a scalar field (i. e. a function), a vector field, or is meaningless.
 - 1. $\operatorname{curl}(\operatorname{curl}(\vec{F}))$
 - 2. $\operatorname{div}(\operatorname{div}(\vec{F}))$
 - 3. $\operatorname{div}(\operatorname{curl}(\vec{F}))$
 - 4. $\operatorname{curl}(\operatorname{div}(\vec{F}))$

III. The coordinate systems below show the circles of radius 1/2, 1, and 2 centered at the origin. For each of the following vector fields, sketch enough of the vectors on these circles to indicate what the vector field is like.

1.
$$x\vec{\imath} + y\vec{\jmath}$$



2.
$$y\vec{\imath} - x\vec{\jmath}$$
 (Hint: $(x\vec{\imath} + y\vec{\jmath}) \cdot (y\vec{\imath} - x\vec{\jmath}) = 0$.)



IV. Use Green's Theorem to calculate $\int_C xy dx + x^2 dy$, where C consists of the line segment from (-2,0) to (2,0) and the top half of the circle $x^2 + y^2 = 4$. (Hint: $dA = r dr d\theta$.)

- $\mathbf{V}. \qquad \text{For the vector field } \vec{F} = \cos(x)\,\vec{\imath} + \sin(z)\,\vec{\jmath} + \tan(y)\,\vec{k}\,, \, \text{calculate div}(\vec{F}) \,\, \text{and} \,\, \text{curl}(\vec{F}).$
- (7)

VI. Let R be a region in the plane. Define what it means to say that R is *simply-connected*. Explain how the definition shows that the region given in polar coordinates by 1 < r < 2 is not simply-connected.

VII. The equations $x = a\sin(\phi)\cos(\theta)$, $y = a\sin(\phi)\sin(\theta)$, $z = a\cos(\phi)$ give a parametric representation of the sphere $x^2 + y^2 + z^2 = a^2$.

- 1. Calculate r_{ϕ} .
- 2. On this picture of the sphere, label the lines where θ is constant, and those where ϕ is constant. Draw some of the vectors \vec{r}_{ϕ} and \vec{r}_{θ} , and also some of the vectors $\vec{r}_{\phi} \times \vec{r}_{\theta}$.

