Instructions: Give brief and to-the-point answers.
I. (a) Give the $\epsilon-\delta$ definition of $\lim _{x \rightarrow x_{0}} f(x)=L$.
(13)
(b) Use the $\epsilon-\delta$ definition to prove that $\lim _{x \rightarrow 1} 1+x=2$.
(c) Use the $\epsilon-\delta$ definition to prove that $\lim _{x \rightarrow 1}(1+x)^{2}=4$.
(d) Give the precise definition of $\lim _{x \rightarrow \infty} f(x)=L$.
(e) Give the precise definition of $\lim _{x \rightarrow x_{0}} f(x)=\infty$.
II. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\sin (1 / x)$ if $x \neq 0$ and $f(0)=0$. Use proof by contradiction and the $\epsilon-\delta$
(4) definition of continuity to prove that f is not continuous at $x_{0}=0$.
III. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions. Use the $\epsilon-\delta$ definition of continuity to
(4) prove that $f+g$ is continuous.
IV. (a) Define what it means to say that a function $f: E \rightarrow \mathbb{R}$ is uniformly continuous.
(b) Use the Mean Value Theorem to prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function and there is a number M so that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in \mathbb{R}$, then f is uniformly continuous.
V. Write the $\epsilon-\delta$ definition of the statement that f is not continuous at x_{0}.
(3)
VI. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Prove that there is a number $c \in[0,1]$ such that $f(c)=c$.
(4)
VII. Without verifying details, give examples of the following.
(10)
(a) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous at every irrational number and discontinuous at every rational number.
(b) A sequence f_{n} of Riemann integrable functions on $[0,1]$ that converges to a Riemann integrable function f, but the sequence of real numbers $\int_{a}^{b} f_{n}$ does not converge to $\int_{a}^{b} f$.
(c) A sequence of Riemann integrable functions on $[0,1]$ that converges to a function which is not Riemann integrable.
(d) A sequence of functions on $[0,1]$, each of which is continuous at all $x \neq 1 / 2$ but is discontinuous at $x=1 / 2$, that converges uniformly to a continuous function.
(e) A bounded function $f:(0,1) \rightarrow \mathbb{R}$ which is continuous but not uniformly continuous.
VIII. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous but not differentiable at every $x \in \mathbb{R}$. (First,
(4) define f_{1} by giving its graph, then define functions f_{n}, and use a series to define f.)
IX. Let $f:[2,4] \rightarrow \mathbb{R}$ be a continuous function. Suppose that $f(2)=2, f(3)=4$, and $f(4)=3$. Prove that f
(4) is not monotone.
X. (a) Define what it means to say that a set E of real numbers has measure 0 .
(10)
(b) Prove that the set $E=\{1 / n \mid n=1,2,3, \ldots\}$ has measure 0 .
(c) State the Riemann-Lebesgue theorem.
(d) Use the Riemann-Lebesgue theorem to prove that if $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are Riemann integrable, then their sum $f+g:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable.
XI. Let $\sum_{j=1}^{\infty} f_{j}$ be a series of functions, each with domain E.
(7)
(a) Define what it means to say that $\sum_{j=1}^{\infty} f_{j}$ converges to $f: E \rightarrow \mathbb{R}$.
(b) Define what it means to say that $\sum_{j=1}^{\infty} f_{j}$ converges uniformly to $f: E \rightarrow \mathbb{R}$.
(c) Suppose that a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ has radius of convergence $R=5$. What can be said about the convergence behavior of $\sum_{n=0}^{\infty} a_{n} x^{n}$, and about where it is uniform?
XII. Let A and B be nonempty sets of real numbers which have upper bounds. Suppose that $\forall a \in A, \exists b \in$ (4) $B, a \leq b$. Prove that $\sup (A) \leq \sup (B)$.
XIII. Use the Weierstrass M-test to verify that the series $\sum_{n=0}^{\infty} x^{n}$ converges uniformly on the interval $[-1 / 2,1 / 2]$.
(4)
XIV. Let $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ be bounded functions, and let P be a partition of $[a, b]$. Prove the
(4) following fact, which is a key step in proving that $\int_{a}^{b} f+g=\int_{a}^{b} f+\int_{a}^{b} g: m_{i}(f+g) \geq m_{i}(f)+m_{i}(g)$.

