I. Take as given the fact that the sine function is continuous. Making use of a theorem we proved in class,
(5) prove that there exists a number a so that $\sin (a)=0.776$.
II. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{1}{x}$.
(8)
(a) Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
(b) Prove that $\lim _{x \rightarrow 0} f(x)=\infty$.
III. Let $f: \mathcal{D}(f) \rightarrow \mathbb{R}$. Let x_{0} be a point in $\mathcal{D}(f)$, and let A be a subset of $\mathcal{D}(f)$. Give precise definitions of (6) the following.
(a) f is continuous at x_{0}
(b) f is continuous on A
(c) f is uniformly continuous on A
IV. Define what it means to say that a subset U of \mathbb{R} is open. Define what it means to say that a subset X of (10) \mathbb{R} is bounded. Define what it means to say that a subset X of \mathbb{R} is compact. Prove that if X is compact, then X is bounded.
V. Write the epsilon-delta definition of the statement that f is not continuous at x_{0}.
(5)
VI. Sketch the graph of the following function: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+1$ if $x \leq 2, f(x)=x$ if $2<x$. Give a
(6) specific open subset U of \mathbb{R} whose preimage $f^{-1}(U)$ is not open. Tell what its preimage set is, and verify that it is not open.
VII. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Making use of a major theorem that we proved in class, prove that (5) there is a number $c \in[0,1]$ such that $f(c)=c$.
VIII. Prove that the function $f:(0,1] \rightarrow \mathbb{R}$ drawn here is not uniformly continuous.
(6)

