Instructions: Give brief and to-the-point answers (do not make the exam longer than it is). Make use of the Riemann-Lebesgue Theorem whenever possible.
I. (a) State the Mean Value Theorem.
(12)

For parts (b) and (c), suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function satisfying the hypotheses of the Mean Value Theorem.
(b) Show that if there exists a number M such that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in \mathbb{R}$, then f is uniformly continuous on \mathbb{R}.
(c) Show that if $f^{\prime}(c)=0$ for all $c \in[a, b]$, then f is constant on $[a, b]$ (hint: apply the MVT on $[a, x]$ for each $x \in(a, b])$.
II. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and let X and Y be partitions of $[a, b]$.
${ }^{(14)}$ (a) If $X=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$, define $m_{i}(f), \Delta x_{i}$, and $\underline{S}(f ; X)$.
(b) What can be said about the relation between $\bar{S}(f ; X)$ and $\underline{S}(f: Y)$?
(c) If X refines Y, what can be said about the relation between $\underline{S}(f ; X)$ and $\underline{S}(f: Y)$?
(d) Define $\underline{S}(f)$ and $\bar{S}(f)$. Define what it means to say that f is Riemann integrable. Assuming that f is Riemann integrable, what is the definition of $\int_{a}^{b} f$?
III. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(0)=0$ and $f(x)=x^{2} \sin \left(\frac{1}{x^{2}}\right)$ if $0<x \leq 1$.
(10)
(a) Sketch the graph of f.
(b) Use the definition of $f^{\prime}(c)$ as a limit to verify that $f^{\prime}(0)$ exists and determine its value (you may use either the Squeeze Theorem for Limits or the $\epsilon-\delta$ methodology to calculate the limit).
(c) Is f Riemann integrable on $[0,1]$? Why or why not?
IV. Without giving any verifications, tell an example of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $f^{\prime}(0)=1$,
(5) but f is not increasing on any open interval that contains 0.
V. Give an explicit partition P with $n=5$ (i. e. P is of the form $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$) of the interval [0,3]
(6) \quad with $\|P\|=1.7$.
VI. Suppose that A and B are bounded subsets of \mathbb{R}. Define $A+B$ to be $\{a+b \mid a \in A, b \in B\}$.
(8) Show that $\sup (A)+\sup (B)$ is an upper bound for $A+B$.
(b) Show (making use of known basic facts about sup) that if $\epsilon>0$ then $\sup (A)+\sup (B)-\epsilon$ is not an upper bound for $A+B$.
VII. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(0)=0$ and $f(x)=1 / n$, if $\frac{1}{n+1}<x \leq \frac{1}{n}$ for $n=1,2, \ldots$
(a) Sketch the graph of f.
(b) Without giving proof, determine $\{x \in[0,1] \mid f$ is not continuous at $x\}$.
(c) Is f Riemann integrable on $[0,1]$? Why or why not?

