I. Calculate the inverse Laplace transforms of the following functions of s, following any special instructions (8) given.

1. $\frac{e^{-2 s}}{s^{2}+5}+\frac{e^{-2 s} s}{s^{2}+5}$
2. $\frac{1}{s\left(s^{2}+1\right)}$, using the formula involving $\frac{1}{s} \mathcal{L}(f(t))$
II. Give an implicit solution for $\frac{d y}{d x}=\frac{1+\sqrt{x}}{1+\sqrt{y}}, y(1)=3$.
III. Did you ever wonder what would happen if the method of variation of parameters were applied to a first (8) order linear equation? Let's figure it out. Start with a general first-order linear equation $y^{\prime}+p(x) y=q(x)$. Suppose that $y_{1}(x)$ is some nonzero solution of the associated homogeneous equation $y^{\prime}+p(x) y=0$. Vary it to get a trial solution for the nonhomogeneous equation, that is, write $y(x)=u_{1}(x) y_{1}(x)$.
3. Calculate $y^{\prime}(x)$.
4. Put the expressions for $y(x)$ and $y^{\prime}(x)$ into the nonhomogeneous equation $y^{\prime}+p(x) y=q(x)$. Simplify it using the fact that $y_{1}(x)$ is a solution to the associated homogeneous equation, and solve for $u_{1}^{\prime}(x)$. Use this expression to obtain a formula giving $y(x)$ as an integral whose integrand involves $q(x)$.
5. Now, let's see why this is nothing new. Use an integrating factor to find a solution $y_{1}(x)$ for $y^{\prime}+p(x) y=0$ (write $A(x)$ for an antiderivative of $p(x)$, multiply through by $e^{A(x)}$, and solve for y using the fact that $\left.\int 0 d x=C\right)$.
6. Put the expression for $y_{1}(x)$ into the formula you obtained using variation of parameters and simplify. Not surprisingly, the resulting formula is exactly the one that results when one solves $y^{\prime}+p(x) y=q(x)$ using an integrating factor, although you need not check this.
IV. Use the series method to solve the first order linear equation $y^{\prime}+k y=0, y(0)=a_{0}$ as follows.
7. Write $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Calculate y^{\prime}, and put the series expresssions for y^{\prime} and y into the equation. Obtain a formula for a_{n+1} in terms of a_{n}.
8. Calculate a_{1} in terms of a_{0}, a_{2} in terms of a_{0}, and so on, until you see the general formula for a_{n} in terms of a_{0}.
9. Put the expressions for a_{n} in terms of a_{0} into the series $\sum_{n=0}^{\infty} a_{n} x^{n}$. Simplify, using the Maclaurin series $e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}$, to obtain the solution to the original equation.
V. Consider the following system of differential equations
(6)

$$
\begin{aligned}
x^{\prime}+4 x & =y^{\prime}+y-t^{3} \\
3 x^{\prime}-y^{\prime} & =1
\end{aligned}
$$

1. Rewrite the system using differential operator notation.
2. Use Kramer's rule to write a linear differential equation whose solution is x, but do not try to solve for x and y.
VI. Consider the following system of differential equations
(6)

$$
\begin{aligned}
x^{\prime}+4 x & =y^{\prime}+y-t^{3} \\
3 x^{\prime}-y^{\prime} & =1
\end{aligned}
$$

1. Assuming that $x(0)=1$ and $y(0)=0$, use the Laplace transform to rewrite the system in terms of functions of s that do not involve derivatives.
2. Use Kramer's rule to solve for $X(s)$, but do not try to find its inverse transform.
VII. Calculate the Laplace transforms of the following functions of t.
(8)
3. $t e^{4 t} \sinh (t)$
4. $f(t)=t-[[t]]$, where $[[t]]$ means the greatest integer less than t (so $[[t]]=0$ when $0 \leq t<1,[[t]]=1$ when $1 \leq t<2$, and so on). You might need to carry out an integration, although it can be avoided by clever use of step functions.
VIII. Consider the boundary value problem $y^{\prime \prime}+\lambda y=0 ; \quad y(0)=0, y^{\prime}(1)=0$.
(9)
5. Define what it means to say that a number λ_{i} is an eigenvalue for the boundary value problem. Define what it means to say that a function is an eigenfunction associated to λ_{i}.
6. Show that this boundary value problem has no negative eigenvalues (start by writing $\lambda=-\alpha^{2}$, with $\alpha>0$).
7. Find all positive eigenvalues of this boundary value problem, and associated eigenfunctions (start by writing $\lambda=\alpha^{2}$, with $\left.\alpha>0\right)$.
IX. Two functions $y=y_{1}(x)$ and $y=y_{2}(x)$ are linearly independent solutions to a certain linear differential (8) equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
8. Write a system of linear equations to find c_{1} and c_{2} so that the solution $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ satisfies the initial conditions $y(0)=3$ and $y^{\prime}(0)=8$. Use Kramer's rule to calculate c_{2} in terms of $y_{1}(0), y_{1}^{\prime}(0), y_{2}(0)$, and $y_{2}^{\prime}(0)$.
9. Given that the function $y_{3}(x)$ satisfies the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)$, write a general solution of the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)$ in terms of $y_{1}(x), y_{2}(x)$, and $y_{3}(x)$.
X. For the equation $y^{(3)}+y^{\prime}=1+x \cos (x)$, solve the associated homogeneous equation, then use the method
(7) of undetermined coefficients to write a trial solution for the equation, but do not try to proceed further with finding the solutions. The general formula for the method of undetermined coefficients is $x^{s}\left(\left(A_{0}+\right.\right.$ $\left.\left.A_{1} x+\cdots+A_{m} x^{m}\right) e^{r x} \cos (k x)+\left(B_{0}+B_{1} x+\cdots+B_{m} x^{m}\right) e^{r x} \sin (k x)\right)$.

(End of exam)

