- I. Calculate the *inverse* Laplace transforms of the following functions of s, following any special instructions
 (8) given.
 - 1. $\frac{e^{-2s}}{s^2+5} + \frac{e^{-2s}s}{s^2+5}$

2.
$$\frac{1}{s(s^2+1)}$$
, using the formula involving $\frac{1}{s}\mathcal{L}(f(t))$

II. Give an implicit solution for
$$\frac{dy}{dx} = \frac{1+\sqrt{x}}{1+\sqrt{y}}$$
, $y(1) = 3$.

- III. Did you ever wonder what would happen if the method of variation of parameters were applied to a *first*
- (8) order linear equation? Let's figure it out. Start with a general first-order linear equation y' + p(x)y = q(x). Suppose that $y_1(x)$ is some nonzero solution of the associated homogeneous equation y' + p(x)y = 0. Vary it to get a trial solution for the nonhomogeneous equation, that is, write $y(x) = u_1(x)y_1(x)$.
 - 1. Calculate y'(x).
 - 2. Put the expressions for y(x) and y'(x) into the nonhomogeneous equation y' + p(x)y = q(x). Simplify it using the fact that $y_1(x)$ is a solution to the associated homogeneous equation, and solve for $u'_1(x)$. Use this expression to obtain a formula giving y(x) as an integral whose integrand involves q(x).

3. Now, let's see why this is nothing new. Use an integrating factor to find a solution $y_1(x)$ for y' + p(x)y = 0 (write A(x) for an antiderivative of p(x), multiply through by $e^{A(x)}$, and solve for y using the fact that $\int 0 dx = C$).

4. Put the expression for $y_1(x)$ into the formula you obtained using variation of parameters and simplify. Not surprisingly, the resulting formula is exactly the one that results when one solves y' + p(x)y = q(x) using an integrating factor, although you need not check this.

- **IV**. Use the series method to solve the first order linear equation y' + ky = 0, $y(0) = a_0$ as follows.
- (9) 1. Write $y = \sum_{n=0}^{\infty} a_n x^n$. Calculate y', and put the series expressions for y' and y into the equation. Obtain a formula for a_{n+1} in terms of a_n .

2. Calculate a_1 in terms of a_0 , a_2 in terms of a_0 , and so on, until you see the general formula for a_n in terms of a_0 .

3. Put the expressions for a_n in terms of a_0 into the series $\sum_{n=0}^{\infty} a_n x^n$. Simplify, using the Maclaurin series $e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!}$, to obtain the solution to the original equation.

V. Consider the following system of differential equations

(6)

$$x' + 4x = y' + y - t^3$$
$$3x' - y' = 1$$

1. Rewrite the system using differential operator notation.

2. Use Kramer's rule to write a linear differential equation whose solution is x, but do not try to solve for xand y.

 \mathbf{VI} . Consider the following system of differential equations

(6)

$$x' + 4x = y' + y - t^3$$
$$3x' - y' = 1$$

1. Assuming that x(0) = 1 and y(0) = 0, use the Laplace transform to rewrite the system in terms of functions of s that do not involve derivatives.

2. Use Kramer's rule to solve for X(s), but do not try to find its inverse transform.

VII. Calculate the Laplace transforms of the following functions of t.

(8) 1. $t e^{4t} \sinh(t)$

2. f(t) = t - [[t]], where [[t]] means the greatest integer less than t (so [[t]] = 0 when $0 \le t < 1$, [[t]] = 1 when $1 \le t < 2$, and so on). You might need to carry out an integration, although it can be avoided by clever use of step functions.

- **VIII**. Consider the boundary value problem $y'' + \lambda y = 0$; y(0) = 0, y'(1) = 0.
- (9) 1. Define what it means to say that a number λ_i is an *eigenvalue* for the boundary value problem. Define what it means to say that a function is an *eigenfunction associated to* λ_i .

2. Show that this boundary value problem has no negative eigenvalues (start by writing $\lambda = -\alpha^2$, with $\alpha > 0$).

3. Find all positive eigenvalues of this boundary value problem, and associated eigenfunctions (start by writing $\lambda = \alpha^2$, with $\alpha > 0$).

- IX. Two functions $y = y_1(x)$ and $y = y_2(x)$ are linearly independent solutions to a certain linear differential (8) equation y'' + p(x)y' + q(x)y = 0.
 - 1. Write a system of linear equations to find c_1 and c_2 so that the solution $y(x) = c_1y_1(x) + c_2y_2(x)$ satisfies the initial conditions y(0) = 3 and y'(0) = 8. Use Kramer's rule to calculate c_2 in terms of $y_1(0)$, $y'_1(0)$, $y_2(0)$, and $y'_2(0)$.

2. Given that the function $y_3(x)$ satisfies the differential equation y'' + p(x)y' + q(x)y = f(x), write a general solution of the differential equation y'' + p(x)y' + q(x)y = f(x) in terms of $y_1(x)$, $y_2(x)$, and $y_3(x)$.

X. For the equation $y^{(3)} + y' = 1 + x \cos(x)$, solve the associated homogeneous equation, then use the method (7) of undetermined coefficients to write a trial solution for the equation, but do *not* try to proceed further with finding the solutions. The general formula for the method of undetermined coefficients is $x^{s}((A_{0} + A_{1}x + \dots + A_{m}x^{m})e^{rx}\cos(kx) + (B_{0} + B_{1}x + \dots + B_{m}x^{m})e^{rx}\sin(kx))$. (End of exam)