Examination I
February 12, 2001
I. Find general or implicit solutions of the following differential equations.

1. $\quad x y^{\prime}=2 y+x^{3} \cos (x) \quad$ (assume that $x>0$)
2. $\quad x=2 \sqrt{x^{2}-16} y y^{\prime} \quad$ (assume that $x>4$)
II. A general solution to the differential equation $y^{\prime}=x-y$ is $y=C e^{-x}+x-1$. Solve the initial value (5) problem $y^{\prime}=x-y, y(0)=10$.
III. What information does the Existence and Uniqueness Theorem give about the initial value problem (3) $\quad x y^{\prime}=\sqrt[3]{y}+x^{3} \cos (x), y(1)=0$?
IV. What information does the Existence and Uniqueness Theorem give about the initial value problem $x y^{\prime}=\sqrt[3]{y}+x^{3} \cos (x), y(1)=1$?
V. What information does the Existence and Uniqueness Theorem give about the initial value problem (3) $\quad x y^{\prime}=\sqrt[3]{y}+x^{3} \cos (x), y(0)=0$?
VI. The differential equation $(x+y) y^{\prime}=x-y$ is known to be exact. Use the method for exact equations to (6) obtain an implicit solution for it.
VII. The half-life of radioactive cobalt is 5.27 years. A sample of radioactive cobalt weighing 100 kilograms is (6) buried in a nuclear waste storage facility. After 200 years, how much cobalt will remain in the sample? (Give the answer in exact form, involving a fractional power of 2.)
VIII. Find a general solution to the differential equation $3 y^{2} y^{\prime}+y^{3}=e^{-x}$.
(6)
IX. A certain object is dropped in the ocean and sinks. Let s be its depth at time t, and let $v=\frac{d s}{d t}$. Assume (6) that the net downward force from gravity and buoyancy is a constant ℓ, and that the water resists the motion of the object with a force proportional to $v^{3 / 2}$.
3. Write a differential equation of the form $v^{\prime}=f(v, t)$ that the velocity must satisfy.
4. Separate the variables for this equation, obtaining an equation of the form $t+C=\int f(v) d v$. Use the substitution $u^{2}=v$ to change the integrand into a rational function of u, but do not proceed further with the calculation. (If you had more time, you could carry out the method of partial fractions to calculate the integral and obtain an implicit solution.)
