I. The functions y₁ = cos(2x) and y₂ = sin(2x) are solutions to the differential equations y" + 4y = 0.
(13)
1. Calculate the Wronskian W(cos(2x), sin(2x)).

2. Find a solution y of the differential equation y'' + 4y = 0 that satisfies the initial conditions y(0) = 3 and y'(0) = 8.

3. Given that the function $\frac{e^x}{5}$ satisfies the differential equation $y'' + 4y = e^x$, write a general solutions of the differential equation $y'' + 4y = e^x$.

- II. Using the formula $x^s ((A_0 + A_1x + \dots + A_mx^m)e^{rx}\cos(kx) + (B_0 + B_1x + \dots + B_mx^m)e^{rx}\sin(kx))$, write
- (10) trial solutions for the method of undetermined coefficients for the following differential equations, but *do not* substitute them into the equations or proceed further with finding the solution.

1. $y'' + y = x \cos(x)$

2. $y^{(3)} + 3y'' + 3y' + y = xe^{-x}$ (Fact: $\lambda^3 + 3\lambda^2 + 3\lambda + 1 = (\lambda + 1)^3$)

III. Rewrite $2\cos(7x) - 11\sin(7x)$ in phase-angle form. Give the exact function (so your answer will involve (6) the inverse tangent function).

IV. Verify that the functions $(x + 1)^2$, x^2 , x, and 1 are linearly dependent on the interval of all real numbers. (5)

V. Making use of the equations $u'_1y_1 + u'_2y_2 = 0$, $u'_1y'_1 + u'_2y'_2 = f(x)$, and the integration formula $\int \sin^2(x) dx = (10)$ $\frac{1}{2}x - \frac{1}{2}\sin(x)\cos(x)$, and the fact that $y = c_1\cos(x) + c_2\sin(x)$ is a general solution of the homogeneous differential equation y'' + y = 0, apply the method of variation of parameters to find a particular solution of $y'' + y = \sin(x)$. (Hint: You will know if you are on the right track if you find that $u'_2 = \sin(x)\cos(x)$. Then, $u_2 = \int \sin(x)\cos(x) dx = \sin^2(x)/2$.) (14)

- **VI**. Consider the boundary value problem $y'' + \lambda y = 0$; y'(0) = 0, y(1) = 0.
 - 1. Define what it means to say that a number λ_i is an *eigenvalue* for the boundary value problem. Define what it means to say that a function is an *eigenfunction associated to* λ_i .

2. Complete the following argument which shows that this boundary value problem has no negative eigenvalues.

Write $\lambda = -\alpha^2$ with $\alpha > 0$. The characteristic equation is $r^2 - \alpha^2 = 0$, with roots $\pm \alpha$, so the general solution is $y = c_1 e^{\alpha x} + c_2 e^{-\alpha x}$. We calculate that $y' = \alpha c_1 e^{\alpha x} - \alpha c_2 e^{-\alpha x}$

3. Complete the following argument to find all positive eigenvalues of this boundary value problem, and associated eigenfunctions.

Write $\lambda = \alpha^2$ with $\alpha > 0$. The characteristic equation is $r^2 + \alpha^2 = 0$, with roots $\pm \alpha i$, so the general solution is $y = c_1 \cos(\alpha x) + c_2 \sin(\alpha x)$. We calculate that $y' = -\alpha c_1 \sin(\alpha x) + \alpha c_2 \cos(\alpha x)$