I. Draw two coordinate systems, and make good sketches of the vector fields $-x \vec{\imath}+\vec{\jmath}$ and $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$.
(6).
II. The figure to the right shows a vector field $P(x, y) \vec{\imath}+$ (8) $\quad Q(x, y) \vec{\jmath}$ in the $x y$-plane. Let \vec{F} be the vector field $P \vec{\imath}+$ $Q \vec{\jmath}+0 \vec{k}$. Answer the following questions, based on the most probable structure for \vec{F} as indicated in the figure.

1. Determine which of P_{x}, P_{y}, Q_{x}, and Q_{y} are positive, negative, or 0 .
2. Say what you can about $\operatorname{curl}(\vec{F})$.
3. Say what you can about $\operatorname{div}(\vec{F})$.

III. State Green's theorem. Prove it for the special case of $\int_{C}(P \vec{\imath}+Q \vec{\jmath}) \cdot d \vec{r}$, where C is the boundary of the (8) unit square $0 \leq x \leq 1,0 \leq y \leq 1$ (to save time, you can examine the line integral carefully on one of the four sides, and say that the others behave similarly).
IV. A certain surface S which is a cone is parameterized by $x=2 v \cos (u), y=2 v \sin (u)$, and $z=v$, where (10) $\quad 0 \leq u \leq 2 \pi$ and $v \geq 0$.
4. Find an $x y z$-equation for S, and use it to sketch S.
5. Compute the vectors \vec{r}_{u}, \vec{r}_{v}, and $\vec{r}_{u} \times \vec{r}_{v}$. Sketch them at some typical point on the surface.
6. Calculate $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|$. Use it to calculate the surface area of the portion of S that lies above the unit disc in the $x y$-plane.
V. Let a be a positive constant, and let S be the sphere of radius a centered at the origin of $x y z$-space.
(12) Parameterize S by $x=a \cos (\theta) \sin (\phi), y=a \sin (\theta) \sin (\phi), z=a \cos (\phi)$, so that $d S=a^{2} \sin (\phi) d R$.
7. Use the parameterization to calculate that the area of S is $4 \pi a^{2}$.
8. Calculate $\iint_{S} z^{2} d S$.
9. Calculate $\iint_{S} z \vec{k} \cdot d \vec{S}$, using the definition of the surface integral of a vector field, and making use of your calculated value of $\iint_{S} z^{2} d S$ (write β for this value, if you could not complete the previous item). Hint: What is \vec{n} ?
10. Calculate $\iint_{S} z \vec{k} \cdot d \vec{S}$, using the Divergence Theorem.
VI. A region S in the $x y$-plane is parameterized by the equations $x=2 u+3 v, y=3 u-2 v$, where the parameter (8) domain is the unit square R given by $0 \leq u \leq 1,0 \leq v \leq 1$.
11. Draw an $x y$-coordinate system and sketch S. Hint: figure out where the four corners and the four sides are sent.
12. Use a change of coordinates and the Jacobian to calculate $\iint_{S} x-y d S$.
VII. Apply Stokes' Theorem on the surface S given by $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0$ to calculate $\int_{C}\left(\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\right.$
(8)
$\left.\frac{x}{x^{2}+y^{2}} \vec{\jmath}\right) \cdot d \vec{r}$, where C is the unit circle. Hints: 1 . note first that this integral equals $\int_{C}(-y \vec{\imath}+x \vec{\jmath}) \cdot d \vec{r}$ (why is this true?), then apply Stokes' Theorem to this line integral. 2. if you can, use the interpretation of the surface integral as the flow across S per unit time to find the value of the surface integral without using direct computation.
VIII. Use Green's Theorem and part 1 of the hint of problem VII to calculate $\int_{C}\left(\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}\right) \cdot d \vec{r}$, where C is the unit circle.
IX. Find a path C in 3-dimensional space that starts at the origin and ends at a point with at least two integer
(6) coordinates, and for which $\int_{C}\left(4 x e^{z} \vec{\imath}+\cos (y) \vec{\jmath}+2 x^{2} e^{z} \vec{k}\right) \cdot d \vec{r}=\frac{2}{e}-\frac{1}{\sqrt{2}}$.
X. Find a unit vector \vec{u} such that the directional derivative of the function $f(x, y, z)=e^{x^{2} y z}$ at $(1,2,3)$ in the (6) direction of \vec{u} equals $\frac{5 e^{6}}{\sqrt{2}}$.
XI. Use the Divergence Theorem to calculate $\iint_{S}\left(x^{3} \vec{\imath}+y^{3} \vec{\jmath}+z^{3} \vec{k}\right) \cdot d \vec{S}$ where S is the surface of the portion (6) of the unit ball $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$ that lies in the first octant, and has the outward normal.
XII. Define what it means to say that a planar domain D is simply-connected. Give explicit examples (drawing good pictures is explicit enough) of each of the following.
13. Two planar domains D_{1} and D_{2} such that D_{1} and D_{2} are simply-connected, but $D_{1} \cup D_{2}$ is not simplyconnected.
14. Two planar domains D_{1} and D_{2} such that D_{1} and D_{2} are not simply-connected, but $D_{1} \cup D_{2}$ is simplyconnected.
