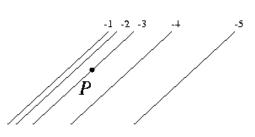
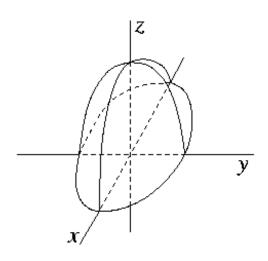
Instructions: Find the easier points and do those problems first. Give brief, clear answers.

- I. The figure to the right shows the graph of $z = (15) \sqrt{2 x^2 2y^2}$.
 - 1. Rewrite the defining equation in the form $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Label the values at the five points where the graph intersects one of the coordinate axes.
 - 2. Label the point P on the graph where $x = 1/\sqrt{2}$ and y = -1/2.
 - 3. Calculate the vectors \vec{v}_x and \vec{v}_y (the vectors tangent to the graph and having components 1 in the \vec{i} direction, for \vec{v}_x , or in the \vec{j} direction, for \vec{v}_y .)
 - 4. At the point P on the graph, draw the vectors \vec{v}_x and \vec{v}_y .
 - 5. Use \vec{v}_x and \vec{v}_y to calculate a normal vector to the surface at the point P.
- **II**. Calculate the following partial derivatives.

(15)

- 1. $\frac{dg}{dx}$ if $g(t_1, \dots, t_n) = 2\sqrt{t_1 + t_2^2 + t_3^3 + \dots + t_n^n}$ and $\frac{dt_i}{dx} = t_i^{i+1}$
- 2. z_{θ} if z is a function of x and y, where $x = r \cos(\theta)$ and $y = r \sin(\theta)$. Noting that $x_{\theta} = -y$ and $y_{\theta} = x$, give the answer purely in terms of z_x , z_y , x, and y.
- 3. $z_{\theta\theta}$ if z is a function of x and y, where $x = r \cos(\theta)$ and $y = r \sin(\theta)$. Give the answer purely in terms of z_x , z_y , x, and y.
- **III**. The figure to the right shows the level lines for a certain
- (10) function g near a point P in the xy-plane. Assuming that the level lines give a good guide to the values of g at P, answer the following.
 - 1. Is $\frac{\partial g}{\partial x}$ positive, negative, or 0 at *P*?
 - 2. Is $\frac{\partial^2 g}{\partial x^2}$ positive, negative, or 0 at *P*?
 - 3. Is $\frac{\partial^2 g}{\partial x \partial y}$ positive, negative, or 0 at *P*?
 - 4. Draw the gradient of g at P.
 - 5. Draw a direction at P for which the directional derivative is slightly less than 0.





- **IV**. Let f(x, y) = c be a level curve of a differentiable function f. Verify using the chain rule that ∇f is (5) perpendicular to this level curve at each point (start by letting $\gamma(t) = (x(t), y(t))$ be a parameterization of the level curve, and examine $\frac{d}{dt}(f(\gamma(t)))$).
- V. Using implicit differentiation, calculate dR if $\frac{1}{R^2} = \frac{1}{R_1^2} + \frac{1}{R_2^2} + \frac{1}{R_3^2}$. (5)

VI. Calculate the rate of change of $f(x, y) = e^{x^2 + y^2}$ at the point (1, 1) in the direction toward (2, 0): (10)

- 1. Algebraically, using ∇f .
- 2. Geometrically, by considering level curves.
- VII. Partition the interval $0 \le x \le 1$ into three intervals with $\Delta x_1 = 0.4$, $\Delta x_2 = 0.1$, and $\Delta x_1 = 0.5$. For (5) the function $f(x) = x^2$, calculate the largest and smallest Riemann sums that can be formed using this partition (the answers are 0.141 and 0.589).
- **VIII.** Show that $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^4}$ does not exist. (5)

IX. Show that
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$
 does not exist. (5)

- X. Show that $\lim_{(x,y)\to(0,0)} \frac{xy^5}{x^2+y^4} = 0$ by using an estimate of $\left|\frac{xy^5}{x^2+y^4}\right|$.
- **XI**. Calculate an equation for the tangent plane to the surface $e^{yz} = e^x$ at the point (1, 1, 2). (Express the (5) surface as a level surface for a certain function of three variables. Do not bother to simplify the equation of the plane.)

XII. Let *D* be the region $\{(x, y) \mid x^2 + y^2 \le 1, y \le 0\}$ in the *xy*-plane, and consider an integral $\iint_D f(x, y) dA$ (5) over the region *D*.

- 1. Supply limits for integrating first with respect to x and then with respect to y.
- 2. Supply limits for integrating first with respect to y and then with respect to x.

XIII. Bonus: Calculate
$$\lim_{n \to \infty} \sum_{j=1}^{n} \frac{\sin(2+j/n)}{n}$$