Instructions: Find the easier points and do those problems first. Give brief, clear answers.
I. The figure to the right shows the graph of $z=$

$$
\begin{equation*}
\sqrt{2-x^{2}-2 y^{2}} \tag{15}
\end{equation*}
$$

1. Rewrite the defining equation in the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. Label the values at the five points where the graph intersects one of the coordinate axes.
2. Label the point P on the graph where $x=1 / \sqrt{2}$ and $y=$ $-1 / 2$.
3. Calculate the vectors \vec{v}_{x} and \vec{v}_{y} (the vectors tangent to the graph and having components 1 in the $\vec{\imath}$ direction, for \vec{v}_{x}, or in the $\vec{\jmath}$ direction, for \vec{v}_{y}.)

4. At the point P on the graph, draw the vectors \vec{v}_{x} and \vec{v}_{y}.
5. Use \vec{v}_{x} and \vec{v}_{y} to calculate a normal vector to the surface at the point P.
II. Calculate the following partial derivatives.
(15)
6. $\frac{d g}{d x}$ if $g\left(t_{1}, \ldots, t_{n}\right)=2 \sqrt{t_{1}+t_{2}^{2}+t_{3}^{3}+\cdots+t_{n}^{n}}$ and $\frac{d t_{i}}{d x}=t_{i}^{i+1}$
7. z_{θ} if z is a function of x and y, where $x=r \cos (\theta)$ and $y=r \sin (\theta)$. Noting that $x_{\theta}=-y$ and $y_{\theta}=x$, give the answer purely in terms of z_{x}, z_{y}, x, and y.
8. $z_{\theta \theta}$ if z is a function of x and y, where $x=r \cos (\theta)$ and $y=r \sin (\theta)$. Give the answer purely in terms of z_{x}, z_{y}, x, and y.
III. The figure to the right shows the level lines for a certain
(10) function g near a point P in the $x y$-plane. Assuming that the level lines give a good guide to the values of g at P, answer the following.
9. Is $\frac{\partial g}{\partial x}$ positive, negative, or 0 at P ?
10. Is $\frac{\partial^{2} g}{\partial x^{2}}$ positive, negative, or 0 at P ?

11. Is $\frac{\partial^{2} g}{\partial x \partial y}$ positive, negative, or 0 at P ?
12. Draw the gradient of g at P.
13. Draw a direction at P for which the directional derivative is slightly less than 0 .
IV. Let $f(x, y)=c$ be a level curve of a differentiable function f. Verify using the chain rule that ∇f is (5) perpendicular to this level curve at each point (start by letting $\gamma(t)=(x(t), y(t))$ be a parameterization of the level curve, and examine $\frac{d}{d t}(f(\gamma(t)))$).
V. Using implicit differentiation, calculate $d R$ if $\frac{1}{R^{2}}=\frac{1}{R_{1}^{2}}+\frac{1}{R_{2}^{2}}+\frac{1}{R_{3}^{2}}$.
VI. Calculate the rate of change of $f(x, y)=e^{x^{2}+y^{2}}$ at the point $(1,1)$ in the direction toward $(2,0)$:
(10)
14. Algebraically, using ∇f.
15. Geometrically, by considering level curves.
VII. Partition the interval $0 \leq x \leq 1$ into three intervals with $\Delta x_{1}=0.4, \Delta x_{2}=0.1$, and $\Delta x_{1}=0.5$. For (5) the function $f(x)=x^{2}$, calculate the largest and smallest Riemann sums that can be formed using this partition (the answers are 0.141 and 0.589).
VIII. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{4}}$ does not exist.
(5)
$\underset{(5)}{\text { IX. }}$ Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist.
X.
(5) \quad Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{5}}{x^{2}+y^{4}}=0$ by using an estimate of $\left|\frac{x y^{5}}{x^{2}+y^{4}}\right|$.
XI. Calculate an equation for the tangent plane to the surface $e^{y z}=e^{x}$ at the point $(1,1,2)$. (Express the surface as a level surface for a certain function of three variables. Do not bother to simplify the equation of the plane.)
XII. Let D be the region $\left\{(x, y) \mid x^{2}+y^{2} \leq 1, y \leq 0\right\}$ in the $x y$-plane, and consider an integral $\iint_{D} f(x, y) d A$ over the region D.
16. Supply limits for integrating first with respect to x and then with respect to y.
17. Supply limits for integrating first with respect to y and then with respect to x.
XIII. Bonus: Calculate $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{\sin (2+j / n)}{n}$.
