I. Calculate the iterated integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \frac{1}{\sqrt{1+x^{2}+y^{2}}} d y d x$.

III. Let r represent a number greater than 1 . Find the y-coordinate of the centroid of the triangle with vertices $(0,0),(1,1),(1, r)$ (note that the area of this triangle is $\left.\frac{r-1}{2}\right)$.
IV. Use facts about the cross-product to verify that the area of the parallelogram in the $x y$-plane determined (5) by the vectors $a \vec{\imath}+b \vec{\jmath}$ and $c \vec{\imath}+d \vec{\jmath}$ is $|a d-b c|$.
V. Let R be the region in the $x y$-plane bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

1. Verify that the transformation $x=a u, y=b v$ sends the unit disc S in the $u v$-plane to the region R.
2. Calculate the Jacobian matrix for this change of variable, and its determinant $\frac{\partial(x, y)}{\partial(u, v)}$.
3. Use this change of variable to calculate $\iint_{R} x^{2} d A$.
VI. Evaluate by reversing the order of integration: $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x$.
(6)
VII. The figure to the right shows the region of integration for the in-
(8) tegral $\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x$.
4. Supply new limits if the order of integration is $d z d y d x$.
5. Supply new limits if the order of integration is $d x d y d z$.

VIII. Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where V is the region in the first octant that lies between the spheres (6) $\quad \rho=2$ and $\rho=4$ and above the cone $\phi=\pi / 6$.
IX. Let D be a region in the $x y$-plane, of area $A(D)$. Show that the area of the portion of the plane $z=a x+b y$
(5) lying in the vertical cylinder determined by D is $\sqrt{a^{2}+b^{2}+1} A(D)$.
X. Let $f(x, y)=x^{2} y^{2}$ and let R be the rectangle $0 \leq x \leq 2,0 \leq y \leq 2$. Subdivide R into four equal squares.
(6) For this partition of R, find the largest and smallest Riemann sums for $f(x, y)$.
