I. Use an integrating factor to solve the first-order linear differential equation $y^{\prime}+\frac{1}{2 x} y=\frac{10}{\sqrt{x}}, y(2)=1$.
(5)
II. Give an example of a first-order initial value problem of the form $y^{\prime}=f(x, y), y(0)=0$, having nonunique (3) solutions. Give two different solutions and verify that they satisfy the equation.
III. For an $n^{t h}$-order linear differential equation $y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x)$:
(6)

1. Tell what it means to say that the equation is homogeneous.
2. State the Principle of Superposition.
3. Assuming that $f(x)$ and the coefficient functions $p_{1}(x), \ldots, p_{n}(x)$ are continuous, tell the initial conditions, at a point $x=a$, that guarantee that the equation has a unique solution.
IV. Write the differential equation $y^{(6)}+y^{(5)}+y^{(4)}+y^{(3)}+y^{\prime \prime}+y^{\prime}+y=x$ as a system of first-order equations. (4)
V. Calculate the following Laplace transforms and inverse Laplace transforms, following any special instruc(12) tions given. Make use of the table of formulas whenever possible.
4. $\mathcal{L}(f(t))$ if $f(t)=t \cosh (t)$
5. $\mathcal{L}(f(t))$ if $f^{\prime}(t)=\cosh (t)$ and $f(0)=1$, using the formula for $\mathcal{L}\left(f^{\prime}(t)\right)$.
6. $\mathcal{L}^{-1}\left(\frac{e^{-2 s}}{s^{2}+2}\right)$
7. $\mathcal{L}(f(t))$, where $f(t)$ is the function shown here:

VI. Solve the nonhomogeneous linear differential equation $y^{\prime}+\frac{1}{2 x} y=\frac{10}{\sqrt{x}}$ using the idea of variation of parameters, as follows.
8. Use the method of separation of variables to find that $y_{c}(x)=\frac{1}{\sqrt{x}}$ is a solution to the homogeneous equation $y^{\prime}+\frac{1}{2 x} y=0$.
9. Vary the solution $y_{c}(x)=\frac{1}{\sqrt{x}}$. That is, let $u=u(x)$ represent an unknown function, and use the function $y=u y_{c}=u \frac{1}{\sqrt{x}}$ as a trial solution in $y^{\prime}+\frac{1}{2 x} y=\frac{10}{\sqrt{x}}$. Obtain an explicit expression for $u(x)$, involving an unknown constant, and use it to find the general solution of the nonhomogeneous equation.
VII. Write a function whose derivative is $\sin \left(x^{2}\right)$.
(2)
VIII. Use Laplace transform methods to solve $x^{\prime}=\delta_{2}(t), x(0)=3$. (3)
IX. Let $f(x)$ be a function, all of whose derivatives exist at $x=a$.
10. Write the general formula for the Taylor series of $f(x)$ at $x=a$.
11. Define what it means to say that $f(x)$ is analytic at $x=a$.
X. Solve the linear differential equation $y^{\prime \prime}+4 y^{\prime}+4 y=e^{-2 x}$ as follows.
(10)
12. Use the characteristic equation to find a general solution to the associated homogeneous equation.
13. Use the method of undetermined coefficients to obtain a trial solution, and put it in the equation to determine a particular solution. (The general formula for the trial solution is $x^{s}\left(\left(A_{0}+A_{1} x+\cdots+A_{m} x^{m}\right) e^{r x} \cos (k x)+\right.$ $\left.\left.\left(B_{0}+B_{1} x+\cdots+B_{m} x^{m}\right) e^{r x} \sin (k x)\right).\right)$
14. Use the general solution of the associated homogeneous equation and the particular solution that you have found to write down a general solution of $y^{\prime \prime}+4 y^{\prime}+4 y=e^{-2 x}$, and find the solution that satisfies the initial condition $y(0)=0, y^{\prime}(0)=1$.
XI. Use differential operators and Cramer's rule to find a single differential equation whose solution is the
(5) solution y of the following system, but do not proceed further with trying to find y.

$$
\begin{aligned}
x^{\prime \prime} & =y-4 x \\
y^{\prime \prime} & =4 x-8 y+\sin (t)
\end{aligned}
$$

XII. Use Laplace transform methods to solve the following system for y.
(5)

$$
\begin{aligned}
x^{\prime \prime} & =-4 x \\
y^{\prime \prime} & =4 x-8 y \\
x(0) & =0, \quad y(0)=1, \quad x^{\prime}(0)=0, \quad y^{\prime}(0)=0
\end{aligned}
$$

XIII. Use the power series method to find a general solution to $y^{\prime}+x y=0$. Use a well-known series to identify (6) the series solution in terms of familiar elementary functions.
XIV. For the following boundary value problem, find all positive eigenvalues, and an associated eigenfunction (6) for each eigenvalue: $y^{\prime \prime}+\lambda y=0, y(0)=0, y^{\prime}(\pi)=0$.

