I. \quad Solve the initial value problem $y^{\prime}=x e^{-x}, y(0)=3$.
(4)
II. Give two different solutions to the IVP $\quad y^{\prime}=y^{2 / 3}, y(0)=0$. You need not check that they are solutions. (2)
III. Give two different solutions to the IVP $y^{\prime}=y^{2 / 3}, y(2)=1$. You need not check that they are solutions. (2)
IV. For the IVP $y^{\prime}=y^{2 / 3}, y(1)=1$, tell why any two solutions must agree on some interval containing the (2) number $x=1$.
V. Write down a function $f(x)$ whose derivative is $e^{x^{2}}$.
(3)
VI. \quad Solve $y^{\prime \prime}+y^{\prime}=0, y(0)=-2, y^{\prime}(0)=3$.
VII. Find a general solution of $x^{2} y^{\prime}=x y+x^{2} e^{-y / x}$. (5)
VIII. Use the Bernoulli substitution $v=y^{1-r}$ to find a general solution to $y^{\prime}+y^{3}=y$. (6)
IX. Calculate the Wronskian of $e^{x} \cos (x)$ and $e^{x} \sin (x)$.
(3)
X. \quad Show that the functions x and $|x|$ are linearly independent on the interval $I=(-2,2)$ as follows: Suppose
(3) they are linearly dependent, so that there are constants k_{1} and k_{2}, not both zero, with $k_{1} x+k_{2}|x|=0$ for all values of x in I. Now, use particular values of x to reach a contradiction.
XI. Use the method of separation of variables to find all solutions to the differential equation $y^{\prime}=y^{2}$. Solve (6) the initial value problem $y^{\prime}=y^{2}, y(-1)=-2$.
XII. Tell what it means to say that a second-order linear equation $A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y=F(x)$ is homo(4) geneous. State the Principle of Superposition.
XIII. On what interval does the Existence and Uniqueness Theorem for second-order linear equations guarantee the existence of a solution to $x y^{\prime \prime}+y^{\prime}+\frac{x}{10-x} y=0, y(1)=2, y^{\prime}(1)=-3$? (Show some explanation of how you arrived at your answer.)
XIV. Bonus: Find a solution to $x^{2} y^{\prime \prime}+x y^{\prime}+y=x^{2}+x+1$.

