I. Solve the initial value problem $y' = xe^{-x}$, y(0) = 3.

(4)

II. Give two different solutions to the IVP $y' = y^{2/3}$, y(0) = 0. You need not check that they are solutions. (2)

III. Give two different solutions to the IVP $y' = y^{2/3}$, y(2) = 1. You need not check that they are solutions. (2)

IV. For the IVP $y' = y^{2/3}$, y(1) = 1, tell why any two solutions must agree on some interval containing the (2) number x = 1.

V. Write down a function f(x) whose derivative is e^{x^2} .

(3)

Solve y'' + y' = 0, y(0) = -2, y'(0) = 3. **VI**. (7)

Find a general solution of $x^2y' = xy + x^2e^{-y/x}$. VII. (5)

VIII. Use the Bernoulli substitution $v = y^{1-r}$ to find a general solution to $y' + y^3 = y$. (6)

IX. Calculate the Wronskian of $e^x \cos(x)$ and $e^x \sin(x)$. (3)

X. Show that the functions x and |x| are linearly independent on the interval I = (-2, 2) as follows: Suppose (3) they are linearly dependent, so that there are constants k_1 and k_2 , not both zero, with $k_1x + k_2|x| = 0$ for all values of x in I. Now, use particular values of x to reach a contradiction.

- **XI**. Use the method of separation of variables to find all solutions to the differential equation $y' = y^2$. Solve
- (6) the initial value problem $y' = y^2$, y(-1) = -2.

XII. Tell what it means to say that a second-order linear equation A(x)y'' + B(x)y' + C(x)y = F(x) is homo-

(4) *geneous.* State the Principle of Superposition.

XIII. On what interval does the Existence and Uniqueness Theorem for second-order linear equations guarantee (3) the existence of a solution to $xy'' + y' + \frac{x}{10-x}y = 0$, y(1) = 2, y'(1) = -3? (Show some explanation of how you arrived at your answer.)

XIV. Bonus: Find a solution to $x^2y'' + xy' + y = x^2 + x + 1$. (4)