I. (a) Write a linear differential equation whose general solution is $c_{1} e^{2 x}+c_{2} x e^{2 x}$.
(6)
(b) Write a linear differential equation whose general solution is $c_{1}+c_{2} e^{2 x} \sin (x)+c_{3} e^{2 x} \cos (x)$.
II. According to the general forumula for the method of undetermined coefficients, a trial solution for the (6) linear differential equation $y^{\prime \prime}+y=\cos (x)$ is $y=A x \cos (x)+B x \sin (x)$. Using this as the trial solution, carry out the method to find the coefficients A and B.
III. Using the formula $x^{s}\left(\left(A_{0}+A_{1} x+\cdots+A_{m} x^{m}\right) e^{r x} \cos (k x)+\left(B_{0}+B_{1} x+\cdots+B_{m} x^{m}\right) e^{r x} \sin (k x)\right)$, write (6) trial solutions for the following equations, but do not substitute them into the equations or proceed further with finding the solution.

1. $y^{\prime \prime}-9 y=x^{3} e^{3 x}$
2. $y^{(4)}-16 y=\cos (x)$
IV. For an $n^{t h}$-order linear differential equation $y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x)$:
(6)
3. Tell what it means to say that the equation is homogeneous.
4. State the Principle of Superposition.
5. Assuming that the coefficient functions $p_{1}(x), \ldots, p_{n}(x)$ are continuous, tell the initial conditions, at a point $x=a$, that guarantee that the equation has a unique solution.
V. Give the definition of the statement that n functions $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$ are linearly independent.
VI. The figure to the right shows the graphs of (4) solutions of two second-order linear equations with constant coefficients. One equation is $m y^{\prime \prime}+c_{1} y^{\prime}+k y=0$, and the other is $m y^{\prime \prime}+$ $c_{2} y^{\prime}+k y=0$, where m, c_{1}, c_{2} and k are four positive numbers.
6. Which of the graphs shows the solution of an
 equation with more damping, the first or the second?
7. If $c_{1}<c_{2}$, which of the graphs shows a solution to $m y^{\prime \prime}+c_{1} y^{\prime}+k y=0$, the first or the second?
VII. Use the method of variation of parameters to find a particular solution of the differential equation $y^{\prime \prime}-y=e^{x}$ (8) as follows.
8. Find two linearly independent solutions $y_{1}(x)$ and $y_{2}(x)$ of the associated homogeneous equation.
9. Use the general equations $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x)$ of the method of variation of parameters to find u_{1}^{\prime} and u_{2}^{\prime}.
10. Use the result of the previous step to find a particular solution.
VIII. For the boundary value problem $y^{\prime \prime}+2 y^{\prime}+\lambda y=0, y(0)=y(1)=0$, show that $\lambda=1$ is not an eigenvalue. (4)
IX. For the boundary value problem $y^{\prime \prime}+\lambda y=0, y(0)=y(1)=0$, find all positive eigenvalues, and an (6) associated eigenfunction for each of the positive eigenvalues. Show your work.
X. Rewrite $2 \cos (3 x)+7 \sin (7 x)$ in phase-angle form. Give the exact function, not a decimal approximation (4) (so your answer will involve an inverse tangent function).
