I. Calculate the Laplace transforms of the following functions $f(t)$, following any special instructions given. (15) Make use of the table of formulas whenever possible.

1. $f(t)=t \sinh (t)$
2. $f(t)=\sin (t) \cos (t)$
3. $f(t)=\frac{\cos (3 t)}{e^{3 t}}$.
4. $f(t)$, where $f(t)$ is the second derivative of a function $g(t)$ whose Laplace transform is $\frac{\cos ^{3}(s)}{s^{3}}, g(0)=3$, and $g^{\prime}(0)=17$.
5. $f(t)=t$ for $0 \leq t \leq 3$ and $f(t)=3$ for $t \geq 3$. Use the definition of the Laplace transform.
II. Calculate the inverse Laplace transforms of the following functions of s. Follow any special instructions (9) given, but do not use partial fractions for any of them - use use other transform methods and formulas.
6. $\frac{1}{s\left(s^{2}+1\right)}$. Use the convolution formula and calculate the convolution.
7. $\frac{1}{s\left(s^{2}+1\right)}$. Use an integral (different from the convolution) to calculate the inverse transform.
8. $\frac{1}{\left(s^{2}+7\right)^{2}}$.
III. Write the following rational function as a sum of partial fractions, and calculate the unknown coefficients: (5)

$$
\frac{s^{3}+s^{2}}{\left(s^{2}+4\right)^{2}}
$$

IV. Consider the following system of differential equations:

$$
\begin{align*}
& x^{\prime \prime \prime}=y^{\prime}+2 \tag{5}\\
& y^{\prime \prime \prime}=x^{\prime}+y+\cos (t)
\end{align*}
$$

1. Rewrite the system using differential operator notation, so that it is a system of two linear equations in the unknowns x and y, and the coefficients are expressions in the differential operator D.
2. Use Cramer's rule to write a linear differential equation whose solution is x, but do not try to solve for x.
V. Use the Laplace transform to solve the following initial value problem:
(6)

$$
x^{\prime \prime}+8 x^{\prime}+15 x=0, \quad x(0)=0, x^{\prime}(0)=2
$$

VI. Consider the following system of differential equations:
(4)

$$
\begin{aligned}
x^{\prime \prime} & =4 x^{\prime}+y^{\prime}+2 \\
y^{\prime \prime} & =x+y^{\prime}+\cos (t)
\end{aligned}
$$

Rewrite the system as a system of four first-order differential equations, in four unknown functions, but do not proceed further with solving the system.
VII. Use the Laplace transform and the convolution to solve the first-order linear initial value problem $x^{\prime}+a x=$ (4) $\quad q(t), x(0)=b_{0}$, where a is a constant. The answer will be an expression for $x(t)$ that contains an integral involving the unknown function $q(t)$.
VIII. Assuming the (difficult) fact that $\frac{d}{d s} \int_{0}^{\infty} G(s, t) d t=\int_{0}^{\infty} \frac{\partial}{\partial s} G(s, t) d t$, verify the formula $\frac{d}{d s} \mathcal{L}(f(t))=$

