I. The figure to the right shows the graph of the polar equation $r=$ (5) $\cos (2 \theta)$. Use a double integral in polar coordinates to calculate the area contained inside each one of its loops. You might need to use the identity $\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)$.

II. Sketch the region in the first octant bounded by the three coordinate planes and the plane $x+y+z=1$.
(4) Write a triple integral whose value is the volume of this region. Supply limits of integration, but do not carry out the calculation to evaluate the integral.
III. Calculate $\int_{0}^{1} \int_{0}^{z} \int_{0}^{y} z e^{-y^{2}} d x d y d z$.
(4)
IV. For the rectangle $R=[0,1] \times[0,2]$, calculate $\iint_{R} \frac{x y}{\sqrt{2+x^{2}+y^{2}}} d A$.
(4)
V. The figure to the right shows the portion of the graph of a certain (3) function $f(x, y)$, and a certain point P in the domain of f. Also shown are the vector $\vec{\jmath}$, located at P, and a vector \vec{v}_{y} tangent to the surface at the point directly above P. Suppose that f_{x} has the value -0.65 at P and f_{y} has the value -0.67 . Find a, b, and c so that $\vec{v}_{y}=a \vec{\imath}+b \vec{\jmath}+c \vec{k}$.

VI. For the following integral, sketch the region of integration and change the order of integration. The answer should have two terms. $\int_{0}^{1} \int_{2 y}^{4 y} f(x, y) d x d y$
VII. State the Fundamental Theorem of Calculus (without hypotheses, just the formula). Calculate (4) $\frac{\partial}{\partial x} \int_{0}^{x^{2} y^{2}} \sin ^{100}\left(t^{2}\right) d t$.
VIII. Find the mass of the upper hemisphere E given by $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$ if the density function is z. In (5) spherical coordinates, $x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi)$, and $d V=\rho^{2} \sin (\phi) d \rho d \phi d \theta$.
IX. Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$, where E is the region that lies inside the cylinder $x^{2}+y^{2}=4$ and between (4) the planes $z=-1$ and $z=2$. Use cylindrical coordinates, so that $\sqrt{x^{2}+y^{2}}=r$.
X. Consider a lamina that occupies the region of the unit disk in the $x y$-plane. Suppose that the density at
(5) each point is proportional to the cube of the distance from the point to the origin. Write an expression for the density function ρ in polar coordinates, and use it to find the mass of the lamina.
XI. Use a Riemann sum for this partition of the rectangle $R=[0,2] \times$
(4) $[0,2]$ to estimate $\iint_{R} \sqrt{x^{2}+y^{2}} d A$, choosing as the sample points the points closest to the origin. Leave the Riemann sum as an unsimplified sum of terms, possibly involving square roots.

XII. Consider the paraboloid $z=x^{2}+y^{2}$ and the saddle surface $z=x^{2}-y^{2}$. Tell how one can know that if (4) D is any domain in the $x y$-plane, then the areas of the portions of these two surfaces having their (x, y) coordinates in D are equal.

