I. Calculate the curl and the divergence of the vector field $x^{2} \vec{\imath}+y^{2} \vec{\jmath}-x y z \vec{k}$.
(6)
II. The figure to the right shows a vector field $\vec{F}=P \vec{\imath}+Q \vec{\jmath}$ (6) and three oriented arcs.

1. Near each arc, write a small " + " if the line integral of $\vec{F}$ along that arc appears to be positive, a "-" if it appears to be negative, and a " 0 " if it appears to be 0 .
2. Does it appear that $\frac{\partial P}{\partial x}$ is positive, negative, or 0 ?
3. Does it appear that $\frac{\partial Q}{\partial y}$ is positive, negative, or 0 ?

4. Does it appear that $\operatorname{div}(\vec{F})$ is positive, negative, or 0 ?
III. Use Green's Theorem to calculate $\int_{C} 3 x y d x+5 x^{2} y^{2} d y$, where $C$ is the triangle with vertices $(0,0),(1,0)$, (5) and (1, 1).
IV. Let $C$ be the portion of the circle of radius 2 with center at the origin that lies in the first quadrant $x \geq 0$, (9) $\quad y \geq 0$. By direct calculation using a parameterization of $C$, evaluate the following line integrals.
5. $\int_{C} x^{2} y d s$
6. $\int_{C} x y d y$
7. $\int_{C}(x \vec{\imath}+y \vec{\jmath}) \cdot d \vec{r}$
V. Use integration to find a function $f(x, y, z)$ for which $\nabla f=(y+z) \vec{\imath}+(x+z) \vec{\jmath}+(x+y) \vec{k}$.
VI. Use the Fundamental Theorem of Calculus to carry out a partial calculation of $\iint_{R} \frac{\partial P}{\partial x} d A$, where $R$ is the rectangle $1 \leq x \leq 3,2 \leq y \leq 4$, and $P(x, y)$ is a function of $x$ and $y$.
VII. Let $f(x, y, z)=\sin \left(x^{2}+y^{2}+z\right)$. Let $C_{1}$ be the line segment from $(0,0,0)$ to $(1,1,0)$, and let $C_{2}$ be the (5) curve on the surface $z=e^{x y}$ that lies directly above $C_{1}$. Calculate $\int_{C_{1}} \nabla f \cdot d \vec{r}$ and $\int_{C_{2}} \nabla f \cdot d \vec{r}$.
VIII. Let $S$ be the surface given by $x=u \cos (v), y=u \sin (v)$, and $z=u$, where the domain of the parameteri(7) zation is the rectangle $0 \leq u \leq 1$ and $0 \leq v \leq 2 \pi$.
8. Calculate $\vec{r}_{u}, \vec{r}_{v}, \vec{r}_{u} \times \vec{r}_{v}$, and $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|$.
9. Sketch the domain $R$ in the $u v$-plane. Tell the points in $R$ where locally the parameterization neither stretches nor contracts area.
10. Find an equation in $x, y$, and $z$ satisfied by all points in the surface (hint: start by calculating $x^{2}+y^{2}$ ).
IX. The figure below shows four regions in the plane. Below each region, write a very small letter $m$ if the (4) region is simply connected, and a very small letter $n$ if the region is not simply-connected. The three dots on the last region means that the region continues to the right forever.

X. Let $C$ be the unit circle in the $x y$-plane and let $\vec{T}$ be its unit tangent vector. Suppose that a certain vector (3) field $\vec{F}$ has the property that each point $(x, y)$ in $C, \vec{F} \cdot \vec{T}=\pi$. Find $\int_{C} \vec{F} \cdot d \vec{r}$.
XI. Give an example of a 2-dimensional vector field $P \vec{\imath}+Q \vec{\jmath}$ which is not conservative but which does satisfy
(2) the condition $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$. You do not need to verify these properties, just write down the vector field.
XII. Find a vector field $\vec{F}$ in the plane so that if $C$ is any path which does not pass through the origin, and $C$ (3) starts at $P$ and ends at $Q$, then $\int_{C} \vec{F} \cdot d \vec{r}$ equals the distance from $Q$ to the origin, minus the distance from $P$ to the origin.
