Math 2423 homework

1. (due 2/1) Use the telescoping sum $\sum_{k=1}^{n} k^{4}-(k-1)^{4}$ and the formulas that we established for $\sum_{k=1}^{n} k$ and $\sum_{k=1}^{n} k^{2}$ to obtain the formula $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
2. $(2 / 1)$ Give a simple formula for $\sum_{k=0}^{n}(-1)^{k} x^{k}$ (the answer involves the expression $\left.(-1)^{n}\right)$.
3. $(2 / 1)$ Let f be a function which is differentiable everywhere. For the error term $E(h)$ in $f(a+h)=f(a)+f^{\prime}(a) h+E(h)$, use the Mean Value Theorem to obtain the estimate that for some c between a and $a+h,|E(h)| \leq\left|f^{\prime \prime}(c)\right| h^{2}$.
4. (2/1) Use the previous problem to show that $|\sin (x)-x| \leq x^{2}$ for all x.
5. (2/1) $5.1 \# 1,3$
6. $(2 / 1)$ Water is poured into a tank at a varying rate. Let $V(t)$ be the volume of water at time t. For a short time interval $\left[t_{i-1}, t_{i}\right]$ and a sample point t_{i}^{*} in $\left[t_{i-1}, t_{i}\right]$, explain what is approximated by $V^{\prime}\left(t_{i}\right) \Delta t_{i}$. Use Riemann sums to explain intuitively why $V(b)-V(a)=\int_{a}^{b} V^{\prime}(t) d t$.
7. $(2 / 1)$ Let δ be a number with $0<\delta<1$. Construct a partition of $[0,1]$ whose mesh is exactly δ (write it down precisely if you can, if not just explain it geometrically).
8. $(2 / 1) 5.1 \# 20,21$
9. (2/1) 5.2 \# 17-20, 33-40
10. (2/8) 5.2 \# 46-50, 67-69
11. (2/8) 5.3 \# 10-17, 19-36 (as many as needed), 45-48, 53, 54
12. (2/15) 5.4 \# 1-2, 5-14 (as many as needed), 17-40 (as many as needed), 43-44, 58, 60
13. (2/15) 5.5.\# 1-32 (as many as needed), 37-54 (as many as needed), 57, 58, 61, 62, 64, 65
14. (3/1) 6.1 \# 1-26 (as many as needed), 44-46
15. (3/1) $6.2 \# 1-18$ (as many as needed), 31-36 (as many as needed), 41-44, 48, 49, 62
16. (3/1) 6.3 \# 3-26 (as many as needed), 29-32, 46
