Math 2423 homework

29. (4/19) Suppose that $f(x)$ is a function whose third derivative $f^{(3)}(x)$ exists and is continuous. Define $E_{2}(h)$ by the formula $f(a+h)=f(a)+f^{\prime}(a) h+\frac{1}{2!} f^{\prime \prime}(a) h^{2}+E_{2}(h)$.
30. Use integration by parts to calculate that $E_{2}(h)=\int_{0}^{h} \frac{1}{2!}(h-t)^{2} f^{(3)}(a+t) d t$.
31. Let m be the minimum and M the maximum of $f^{(3)}$ on the interval $[a, a+h]$. Show that $\frac{1}{3!} h^{3} m \leq E_{2}(h) \leq \frac{1}{3!} h^{3} M$.
32. Use the Intermediate Value Theorem to show that there exists c in $[a, a+h]$ so that $E_{2}(h)=\frac{1}{3!} f^{(3)}(c) h^{3}$.
33. $(4 / 19) 8.2 \# 6,7,11,13,19,20,29,36,41,42,43,46,60,61$
34. $(4 / 19) 8.3 \# 5,7,10,18,23,26,29,32,33$
35. 8.4 \# 1, 2, 5, 6, 9, 17, 23, 25, 34, 37
36. 8.6 \# 5-7, 13, 15, 19, 27, 28, 31, 32
37. $8.7 \# 21(\mathrm{c})\left(S_{n}\right.$ only)
38. $8.8 \# 5,7,11,15,20,21,27,32,35,55,57,61$
39. $9.1 \# 5,7,10-13$
40. $9.2 \# 5,8,9,15,16,25$
