I. Use the telescoping sum $\sum_{k=1}^{n} k^2 - (k-1)^2$ to obtain the formula $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

- II. Calculate the Riemann sum for the following partition and function, using left-hand endpoints as the (5) sample points x_i^* : the function is $f(x) = x^2/2$, the interval is [1, 10], and the partition is $x_1 = 2$, $x_2 = 4$, and $x_3 = 9$.
- **III.** Give an explicit example of a partition of the interval [0, 10] that has mesh π .
- (3)

(6)

- **IV**. Let f(x) be the function defined by f(x) = 0 for $0 \le x < 5$ and f(x) = 1 for $5 \le x \le 10$. Consider the (5) partition of [0, 10] defined by $x_1 = 3$, $x_2 = 7$. By making two different choices of the points x_i^* , show that both of the numbers 3 and 7 are Riemann sums for this function and this partition of [0, 10].
- V. Write the following limit as an integral, but do not try to calculate the integral: $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\pi}{6n} \tan\left(\frac{i\pi}{6n}\right).$

VI. State the Fundamental Theorem of Calculus (both parts, of course).

- **VII**. State the Mean Value Theorem for Integrals.
- (3) **VIII**. Calculate the following derivatives: $\frac{d}{dx} \int_{1}^{x} \frac{\sin(t)}{t} dt$, $\frac{d}{dx} \int_{1}^{x^3} \frac{\sin(t)}{t} dt$, $\frac{d}{dx} \int_{x^2}^{x^3} \frac{\sin(t)}{t} dt$.

IX. Verify that
$$\int (x^2 - 1)^{3/2} dx$$
 is not $\frac{2}{5}(x^2 - 1)^{5/2} + C$
(3)

- X. Calculate the following indefinite integrals: $\int \left(w + \frac{1}{w}\right)^2 dw$, $\int \sqrt{\cot(x)} \csc^2(x) dx$, and $\int \frac{\cos(\pi/x)}{x^2} dx$.
- **XI**. Calculate $\int_0^{3\pi/2} |\cos(\theta)| d\theta$. (4)
- **XII.** A differentiable function f(x) satisfies f(100) = 100 and $f'(x) < \frac{1}{x}$ for all x. Show that f(1000) < 109. (5)
- **XIII.** Use the substitution $u = \sin(\theta)$ (and the fact that $\cos^2(\theta) = 1 \sin^2(\theta)$) to calculate that the following (4) integral $\int_0^{\pi} \sin^5(\theta) \cos^7(\theta) \, d\theta$ equals 0.
- **XIV.** Simplify $x^2 x^4 + x^6 x^8 + x^{10} \dots + x^{202}$. (4)