I. Use the telescoping sum $\sum_{k=1}^{n} k^{2}-(k-1)^{2}$ to obtain the formula $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$.
II. Calculate the Riemann sum for the following partition and function, using left-hand endpoints as the (5) sample points x_{i}^{*} : the function is $f(x)=x^{2} / 2$, the interval is $[1,10]$, and the partition is $x_{1}=2, x_{2}=4$, and $x_{3}=9$.
III. Give an explicit example of a partition of the interval $[0,10]$ that has mesh π.
(3)
IV. Let $f(x)$ be the function defined by $f(x)=0$ for $0 \leq x<5$ and $f(x)=1$ for $5 \leq x \leq 10$. Consider the (5) partition of $[0,10]$ defined by $x_{1}=3, x_{2}=7$. By making two different choices of the points x_{i}^{*}, show that both of the numbers 3 and 7 are Riemann sums for this function and this partition of $[0,10]$.
V. Write the following limit as an integral, but do not try to calculate the integral: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{6 n} \tan \left(\frac{i \pi}{6 n}\right)$.
(3)
VI. State the Fundamental Theorem of Calculus (both parts, of course).
(6)
VII. State the Mean Value Theorem for Integrals.
VIII. Calculate the following derivatives: $\frac{d}{d x} \int_{1}^{x} \frac{\sin (t)}{t} d t, \frac{d}{d x} \int_{1}^{x^{3}} \frac{\sin (t)}{t} d t, \frac{d}{d x} \int_{x^{2}}^{x^{3}} \frac{\sin (t)}{t} d t$.
IX. Verify that $\int\left(x^{2}-1\right)^{3 / 2} d x$ is not $\frac{2}{5}\left(x^{2}-1\right)^{5 / 2}+C$.
(3)
X. Calculate the following indefinite integrals: $\int\left(w+\frac{1}{w}\right)^{2} d w, \int \sqrt{\cot (x)} \csc ^{2}(x) d x$, and $\int \frac{\cos (\pi / x)}{x^{2}} d x$.
(9)
XI. Calculate $\int_{0}^{3 \pi / 2}|\cos (\theta)| d \theta$.
(4)
XII. A differentiable function $f(x)$ satisfies $f(100)=100$ and $f^{\prime}(x)<\frac{1}{x}$ for all x. Show that $f(1000)<109$.
(5)
XIII. Use the substitution $u=\sin (\theta)$ (and the fact that $\left.\cos ^{2}(\theta)=1-\sin ^{2}(\theta)\right)$ to calculate that the following integral $\int_{0}^{\pi} \sin ^{5}(\theta) \cos ^{7}(\theta) d \theta$ equals 0.
XIV. Simplify $x^{2}-x^{4}+x^{6}-x^{8}+x^{10}-\cdots+x^{202}$.

