I. Let R be the region bounded by $y=\frac{1}{x^{2}+1}$, the x-axis, the y-axis, and the line $x=2$. Calculate the (6) volume produced when this region is rotated about the y-axis.
II. Calculate the volume produced when the region bounded by the curve $y=e^{x}$, the x-axis, the y-axis, and (6) the line $x=1$ is rotated about the line $y=-c$, where c is a positive number.
III. Define what it means to say that a function f is one-to-one. Find the smallest value of a for which the (6) function defined by $f(x)=3 x^{2}+17 x+217$ is one-to-one on the interval [a, ∞) (i. e. for $a \leq x<\infty$).
IV. Let $a>1$. Explain why the derivative of the function a^{x} at $x=0$ is $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}$. Writing a_{0} for the number $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}$, show that the derivative of a^{x} is $a_{0} a^{x}$.
V. Solve the following equations for x.
(6)

1. $2 \ln (x)=\ln (2)+\ln (x+1)$.
2. $e^{a x}=C e^{b x}$.
VI. Calculate the following derivatives.
(12)
3. $\frac{d y}{d t}$ if $y=\ln \left(\sqrt[4]{\left(\frac{(2 t+1)^{3}}{t^{2}-1}\right)^{5}}\right)$.
4. $\frac{d y}{d x}$ if $y=x^{1 / x}$.
5. $\frac{d}{d x}\left(f^{-1}(x)\right)$ in terms of f^{\prime}.
VII. Calculate the following integrals.
(12)
6. $\int \frac{e^{x}+1}{e^{x}} d x$.
7. $\int \frac{e^{x}}{e^{x}+1} d x$.
8. $\int x 2^{x^{2}} d x$.
9. $\int_{e}^{6} \frac{d x}{x \ln (x)}$.
VIII. For $x>1$, let $M(x)$ be the average value of the natural logarithm function on the interval from 1 to x.
(5) Write an expression for $M(x)$. Verify that $M(x)+(x-1) M^{\prime}(x)=\ln (x)$.
IX. How are the volume of an object and its average cross-sectional area related?
