I. Let R be the region bounded by $y = \frac{1}{x^2 + 1}$, the x-axis, the y-axis, and the line x = 2. Calculate the volume produced when this region is rotated about the y-axis.

II. Calculate the volume produced when the region bounded by the curve $y = e^x$, the x-axis, the y-axis, and

(6) the line x = 1 is rotated about the line y = -c, where c is a positive number.

III. Define what it means to say that a function f is *one-to-one*. Find the smallest value of a for which the (6) function defined by $f(x) = 3x^2 + 17x + 217$ is one-to-one on the interval $[a, \infty)$ (i. e. for $a \le x < \infty$).

IV. Let a > 1. Explain why the derivative of the function a^x at x = 0 is $\lim_{h \to 0} \frac{a^h - 1}{h}$. Writing a_0 for the number (7) $\lim_{h \to 0} \frac{a^h - 1}{h}$, show that the derivative of a^x is $a_0 a^x$.

V. Solve the following equations for x.

(6)
1.
$$2\ln(x) = \ln(2) + \ln(x+1).$$

2.
$$e^{ax} = Ce^{bx}$$
.

VI. Calculate the following derivatives. (12)

1.
$$\frac{dy}{dt}$$
 if $y = \ln\left(\sqrt[4]{\left(\frac{(2t+1)^3}{t^2-1}\right)^5}\right)$.
2. $\frac{dy}{dx}$ if $y = x^{1/x}$.
3. $\frac{d}{dx}(f^{-1}(x))$ in terms of f' .

VII. Calculate the following integrals.

(12) 1. $\int \frac{e^x + 1}{e^x} dx.$ 2. $\int \frac{e^x}{e^x + 1} dx.$ 3. $\int x 2^{x^2} dx.$ 4. $\int_e^6 \frac{dx}{x \ln(x)}.$

VIII. For x > 1, let M(x) be the average value of the natural logarithm function on the interval from 1 to x. (5) Write an expression for M(x). Verify that $M(x) + (x - 1)M'(x) = \ln(x)$.

IX. How are the volume of an object and its average cross-sectional area related? (z)

(5)