Instructions: The exam might be on the long side, so avoid spending a lot of time on any individual problem unless you have completed all the other problems that you definitely know how to do. That is, grab easy points first.
I. Let $\sin ^{-1}(x)$ be the inverse of the function $f(x)=\sin (x),-\pi / 2 \leq x \leq \pi / 2$.

1. Find the domain and range of $\sin ^{-1}(x)$.
2. Sketch the graph of $\sin ^{-1}(x)$.
3. Use right triangles to simplify the expressions $\cos \left(\sin ^{-1}(x)\right)$ and $\cot \left(\sin ^{-1}\left(\frac{\sqrt{x+2}}{x}\right)\right)$.
4. Use the chain rule to calculate the derivative of $\sin ^{-1}(x)$, and write the corresponding indefinite integral formula.
II. On one $x-y$ coordinate system, sketch the graphs of $\sinh (x)$ and $\cosh (x)$. Explain why $(\cosh (t), \sinh (t))$ is (10) a point on a hyperbola, and on a second $x-y$ coordinate system sketch that hyperbola and a typical point of the form $(\cosh (t), \sinh (t))$, indicating what t equals geometrically.
III. Use l'Hôpital's rule to calculate the following limits:
(12)
5. $\lim _{x \rightarrow 0} \frac{\tan (p x)}{\tan (q x)}$.
6. $\lim _{x \rightarrow 0} \sin (x) \ln (x)$.
7. $\lim _{x \rightarrow 0} x^{\sqrt{x}}$.
IV. Calculate the following integrals.
(15)
8. $\int x^{2} \sin (x) d x$
9. $\int \sin ^{3}(m x) d x$
10. $\int \sin ^{2}(x) \cos ^{2}(x) d x$
V. Calculate the following integral by using the substitution $t=\sqrt{2} \tan (\theta)$. Express the answer in terms of t : (10) $\int \frac{t^{3}}{\sqrt{t^{2}+2}} d t$.
VI. For each of the following rational functions, write out the form of the partial fraction decomposition. Do (12) not solve for unknown values of the coefficients.
11. $\frac{x^{3}}{x^{4}-1}$
12. $\frac{1}{x^{3}+2 x^{2}+x}$
13. $\frac{x^{2}}{x^{3}+1}$
VII. Evaluate $\int \frac{\sec ^{2}(\theta) \tan ^{2}(\theta)}{\sqrt{9-\tan ^{2}(\theta)}} d \theta$ by using one of the following formulas from the table of integrals:
14. $\int \frac{u^{2}}{\sqrt{u^{2}-a^{2}}} d u=\frac{u}{2} \sqrt{u^{2}-a^{2}}+\frac{a^{2}}{2} \ln \left|u+\sqrt{u^{2}-a^{2}}\right|+C$
15. $\int \frac{u^{2}}{\sqrt{2 a u-u^{2}}} d u=-\frac{u+3 a}{2} \sqrt{2 a u-u^{2}}+\frac{3 a^{2}}{2} \cos ^{-1}\left(\frac{a-u}{a}\right)+C$
16. $\int \frac{u^{2}}{\sqrt{a^{2}-u^{2}}} d u=-\frac{u}{2} \sqrt{a^{2}-u^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{u}{a}\right)+C$
17. $\int \frac{u^{2}}{\sqrt{a+b u}} d u=\frac{2}{15 b^{3}}\left(8 a^{2}+3 b^{2} u^{2}-4 a b u\right) \sqrt{a+b u}+C$
VIII. Suppose that $f(x)$ is a function whose third derivative $f^{(3)}(x)$ exists and is continuous. Define $E_{2}(h)$ by (12) the formula $f(a+h)=f(a)+f^{\prime}(a) h+\frac{1}{2!} f^{\prime \prime}(a) h^{2}+E_{2}(h)$.
18. Use integration by parts to calculate that $E_{2}(h)=\int_{0}^{h} \frac{1}{2!}(h-t)^{2} f^{(3)}(a+t) d t$.
19. Let m be the minimum and M the maximum of $f^{(3)}$ on the interval $[a, a+h]$. Show that $\frac{1}{3!} h^{3} m \leq E_{2}(h) \leq$ $\frac{1}{3!} h^{3} M$.
20. Use the Intermediate Value Theorem to show that there exists c in $[a, a+h]$ so that $E_{2}(h)=\frac{1}{3!} f^{(3)}(c) h^{3}$.
