Math 2443 homework

1. (due $1 / 26$) $15.3 \# 13-24$ as many as needed, including at least $18,23,24,33$, and 34
2. (1/26) 14.4 \# 33, 36
3. $(1 / 26) 15.1 \# 1,8,30,32,34,59,60$
4. $(1 / 26) 14.3 \# 39,47,49,50$
5. (2/7) $15.3 \# 1,8,43,59,60,65,66,68(\mathrm{e})(\mathrm{f}), 77$ (use implicit differentiation), 82,83
6. $(2 / 7) 15.4$ \# 4, 6, 17, 31, 32, 38
7. $(2 / 7) 15.5 \# 5,6,9,13,14,15,23,24,39,45,46,51$
8. $(2 / 23) 15.6 \# 6,12,14,15,18,20,22,26,34,37,38,42,49,51,58$
9. $(2 / 23) 15.7 \# 31,32,40,44$ (it suffices to examine $f(x, y)=x^{2} y^{2}\left(a^{2} b^{2}-b^{2} x^{2}-a^{2} y^{2}\right) \ldots$ on the domain $\left\{(x, y) \mid 0 \leq x, 0 \leq y, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\} \ldots$ why?)
10. (2/23) $15.8 \# 3,14,28,32$
11. (3/9) $16.1 \#$ 5, 11-13
12. (3/9) 16.2 \# 9-12, 16, 20, 22
13. (3/9) 16.3 \# 14, 15, 23, 26, 27, 39-42, 44
14. (3/9) $16.4 \# 7-9,13,17,19,23,28,33,34$ (you may assume that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=$ $\left.\lim _{a \rightarrow \infty} \int_{-a}^{a} e^{-x^{2}} d x\right)$
15. $(3 / 9) 16.5 \# 7,12,14$ (Hint: $r=2 \sin (\theta))$
16. $(3 / 9) 16.6 \# 2,10,11(r=a \cos (\theta))$
17. (4/4) $16.7 \# 11,19,25,26,32,39$
18. (4/4) 16.8 \# 2-6, 9, 14(a), 16, 19, 28, 38
19. (4/4) $16.9 \# 1,2,4,7,10,13,17$ (a), 21, 23
20. (4/4) 17.1 \# 2, 5 (first examine $\nabla(x y)$), 6, 11-18, 29-32
21. (4/4) $17.2 \# 3-5,7,11,17,18-19,24$ (show geometrically that the integral is 0 , check algebraically if you wish), 31, 32, 44
22. $(4 / 20) 17.3 \# 1,12,14,17,18$
