
Mathematics 2443-006H
Final Examination
May 11, 2006

Name (please print)

Instructions: Give brief, clear answers. Use theorems whenever possible.

I.
(9)

Let S be the portion of the cone z =
√

x2 + y2 between z = 0 and z = 2. It can be parameterized by the
formulas x = u cos(v), y = u sin(v), z = u.
(a) Sketch the domain R of this parameterization.

On the cone, we have 0 ≤ v ≤ 2π, and since z = u, this portion of the cone corresponds to 0 ≤ u ≤ 2.
So R is the rectangle 0 ≤ v ≤ 2π, 0 ≤ u ≤ 2 in the uv-plane.

(b) Sketch the surface and some typical vectors ~ru and ~rv.

[It is the standard cone between z = 0 and z − 2. Since v corresponds to the polar angle in the
horizontal planes, rv is tangent to the horizontal cross section circles and point to the right on the
front side of the cone (when x and y are in their customary directions). Increasing u does not change
the polar angle, but does increase z, so ru points upward on the cone.

(c) Calculate ~ru and ~rv explicitly, and use them to calculate an upward normal vector to the surface.

Using the expression for x, y, and z in terms of u and v, we have

~ru =
∂(u cos(v))

∂u
~ı +

∂(u sin(v))
∂u

~ +
∂u

∂u
~k = cos(v)~ı + sin(v)~ +~k. Similarly, ~rv = −u sin(v)~ı + u cos(v)~.

Using the right-hand rule, the upward normal is ~rv × ~ru = −u cos(v)~ı− u sin(v)~ + u~k.

(d) Express dS in terms of dR.

We have ‖~rv×~ru ‖ = ‖ −u cos(v)~ı−u sin(v)~+u~k ‖ =
√

u2 cos2(v) + u2 sin2(v) + u2 =
√

2u2 =
√

2 u,
so dS =

√
2 u dR.

II.
(5)

It is a fact that any simple closed loop C in 3-dimensional space bounds a two-sided surface S (although if
C is knotted, S will not be a disk, but a more complicated surface), and Stokes’ Theorem applies to any
surface bounded by C, not just disks. Using this fact, together with Stokes’ Theorem, verify that if C is

any simple closed loop,
∫

C
∇f · d~r = 0. (Of course, this follows from the Fundamental Theorem for Line

Integrals as well.) Verify any facts about curl that may be needed in your argument.

Using Stokes’ Theorem on a surface S bounded by C, we have
∫

C
∇f · d~r =

∫∫
S

curl(∇f) · d~S. But

curl(∇f) = curl(fx~ı + fy~ + fz
~k) = (fzy − fyz)~ı − (fzx − fxz)~ + (fyx − fxy)~k = 0~ı + 0~ + 0~k = ~0, so∫∫

S
curl(∇f) · d~S =

∫∫
S

~0 · d~S = 0.

III.
(6)

Verify that if S and E satisfy the hypotheses of the Divergence Theorem, then:

(a) the volume of E is 1
3

∫∫
S
(x~ı + y~ + z~k) · d~S.

By the Divergence Theorem, 1
3

∫∫
S
(x~ı+y~+z~k) ·d~S =

1
3

∫∫∫
E

div(x~ı+y~+z~k) dV =
1
3

∫∫∫
E

3 dV =∫∫∫
E

dV , which is the volume of E.
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(b)
∫∫

S
D~nf dS =

∫∫∫
E

∆f dV , where ~n is the unit normal to the surfaces and ∆f is the Laplacian

fxx~ı + fyy~ + fzz
~k.

The Divergence Theorem gives
∫∫

S
D~nf dS =

∫∫
S
∇f · ~n dS =

∫∫
S
∇f · d~S =

∫∫∫
E

div(∇f) dV .

Since div(∇f) = div(fx~ı + fy~ + fz
~k) = fxx + fyy + fzz = ∆f , the last integral equals

∫∫∫
E

∆f dV .

IV.
(6)

Use the Divergence Theorem to calculate
∫∫

S
(4x3z~ı + 4y3z~ + 3z4~k) · d~S where S is the boundary of the

solid hemisphere x2 + y2 + z2 ≤ R2, 0 ≤ z. Hint: use spherical coordinates on the solid hemisphere, and
the fact that x2 + y2 + z2 = ρ2 to simplify the integrand.

Letting E be the solid hemisphere, the Divergence Theorem gives∫∫
S
(4x3z~ı + 4y3z~ + 3z4~k) · d~S =

∫∫∫
E

12x2z + 12y2z + 12z3 dV

=
∫∫∫

E
12(x2 + y2 + z2)z dV =

∫ 2π

0

∫ π/2

0

∫ R

0
12ρ2 ρ cos(φ) ρ2 sin(φ) dρ dφ dθ

=
12 R6

6

∫ 2π

0

∫ π/2

0
cos(φ) sin(φ) dρ dφ dθ = 2R6

∫ 2π

0

sin2(φ)
2

∣∣∣∣π/2

0

dθ = 2π R6

V.
(6)

Use Stokes’ Theorem to evaluate
∫

C
(e−x~ı + ex~ + ez~k) · d~r, where C is the boundary of the portion of the

surface x+y+z = 1 that lies in the first octant. You may take as known the fact that curl(e−x~ı+ex~+ez~k) =
ex~k, no need to calculate it.

Let S be the portion of the plane in the first octant. Using Stokes’ Theorem, we have
∫

C
(e−x~ı +

ex~ + ez~k) · d~r =
∫∫

S
curl(e−x~ı + ex~ + ez~k) · d~S =

∫∫
S

ex~k · d~S. Now S is the graph of the function

z = 1−x−y over the domain R in the xy-plane given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1−x. Using the formula

for a surface integral on a surface that is the graph of a function, we find
∫∫

S
ex~k · d~S =

∫∫
R

ex dR =∫ 1

0

∫ 1−y

0
ex dx dy =

∫ 1

0
e1−y − 1 dy = (−e1−1 + e1−0)− 1 = e− 2.

VI.
(5)

Use implicit differentiation to calculate
∂R

∂R3

∣∣∣
(R1,R2,R3)=(

√
3,
√

6,2)
if

1
R

=
1

R2
1

+
1

R2
2

+
1

R2
3

.

− 1
R2

∂R

∂R3
= 0 + 0− 2

R3
3

, so
∂R

∂R3
=

2R2

R3
3

. When (R1, R2, R3) = (
√

3,
√

6, 2), R = 4/3,

so
∂R

∂R3

∣∣∣
(R1,R2,R3)=(

√
3,
√

6,2)
=

2(4
3)2

8
=

4
9
.

VII.
(6)

If z is a function of x and y, calculate
∂z

∂r
and

∂z

∂θ
, where r and θ are the polar coordinates. Write each

result in terms of
∂z

∂x
,

∂z

∂y
, x, y, and r, that is, without using θ explicitly.

We have x = r cos(θ) and y = r sin(θ), so using the Chain Rule gives

∂z

∂r
=

∂z

∂x

∂(r cos(θ))
∂r

+
∂z

∂y

∂(r sin(θ))
∂r

= cos(θ)
∂z

∂x
+ sin(θ)

∂z

∂y
=

1
r

(
x

∂z

∂x
+ y

∂z

∂y

)
∂z

∂θ
=

∂z

∂x

∂(r cos(θ))
∂θ

+
∂z

∂y

∂(r sin(θ))
∂θ

= −r sin(θ)
∂z

∂x
+ r cos(θ)

∂z

∂y
= −y

∂z

∂x
+ x

∂z

∂y
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VIII.
(12)

Calculate each of the following.

(a) The directional derivative of
1
xy

+
1
yz

at (2, 1, 2) in the direction toward the origin.

We have ∇
( 1

xy
+

1
yz

)
= − 1

x2y
~ı−

( 1
xy2

+
1

y2z

)
~− 1

yz2
~k. so the gradient at (2, 1, 2) is −1

4~ı−~− 1
4
~k. A

vector in the direction of the origin is −2~ı− j− 2~k, whose length is 3, so a unit vector in the direction
of the origin is −2

3~ı −
1
3j − 2

3
~k. Taking the dot product of the gradient vector with this unit vector

gives 2
3 .

(b) The maximum rate of change of qe−p − pe−q at (p, q) = (0, 0), and the direction in which it occurs.

We calculate ∇(qe−p − pe−q) = (−qe−p − e−q)~ı + (e−p + pe−q)~. At this origin, this is −~ı + ~, so this
is the direction of the maximum rate of change, and this maximum is ‖ −~ı + ~ ‖ =

√
2.

(c) A vector-valued function giving the line perpendicular to the level surface of xyz at the point (1, 2, 3).

We calculate ∇(xyz) = yz~ı + xz~ + xy~k, whose value at (1, 2, 3) is 6~ı + 3~ + 2~k. This is a direction
vector for the normal line, which is then given by the vector-valued function ~r(t) = (1 + 6t)~ı + (2 +
3t)~ + (3 + 2t)~k.

(d) An equation for the tangent plane to the level surface of
1

xyz
at the point (1, 2, 3).

The level surfaces of
1

xyz
are the same as those of the function xyz. We already calculated the gradient

vector of xyz at this point to be 6~ı + 3~ + 2~k, and it is a normal vector to the tangent plane. So an
equation for the tangent plane is 6(x− 1) + 3(y − 2) + 2(z − 3) = 0, or 6x + 3y + 2z = 18.

IX.
(5)

Six positive numbers x, y, z, u, v, and w, each less than or equal to 2, are multiplied together. Use
differentials to estimate the maximum possible error in the computed product that might result from
rounding each number off to the nearest whole number.

We calculate d(xyzuvw) = yzuvw dx + xzuvw dy + xyuvw dz + xyzvw du + xyzuw dv + xyzuv dw.
Rounding off to the nearest integer allows any of dx, etc., to be as large as 0.5, and each of the
five-term products is at most 25 = 32, so the linear part of the error is no more than 6 · 32 · 0.5 = 96.

X.
(5)

Six positive numbers x, y, z, u, v, and w, are multiplied together. The first three are increasing at 0.5
units per second, while the last three are decreasing at 0.1 units per second. Find the rate of change of the
product at a moment when all of the numbers except w equal 1, and w = 2.

The Chain Rule gives

d(xyzuvw)
dt

= yzuvw
dx

dt
+ xzuvw

dy

dt
+ xyuvw

dz

dt
+ xyzvw

du

dt
+ xyzuw

dv

dt
+ xyzuv

dw

dt
.

Specializing to a moment when each of x, etc. equals 1, we obtain

2 · 0.5 + 2 · 0.5 + 2 · 0.5− 2 · 0.1− 2 · 0.1− 1 · 0.1 = 2.5 .
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XI.
(7)

Calculate the area inside the ellipse
x2

a2
+

y2

b2
= 3 as follows.

(a) Let S be the region bounded by the ellipse. Define φ from the uv-plane to the xy-plane by φ(u, v) =
(au, bv). Determine the region R in the uv-plane that corresponds to S under φ.

In (u, v)-coordinates, the boundary ellipse becomes
(au)2

a2
+

(bv)2

b2
= 3, that is, u2 + v2 = 1, so R is

the disk of radius
√

3.

(b) Calculate the Jacobian
∂(x, y)
∂(u, v)

=


∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

 and its determinant.

∂(x, y)
∂(u, v)

=

a 0

0 b

, whose determinant is ab.

(c) Write a double integral over the domain S whose value is the area, change it into uv-coordinates, and
evaluate to find the area.∫∫

S
dS =

∫∫
R

ab dR = ab

∫∫
R

dR = ab · (area of R) = 3πab.

XII.
(6)

Let D be the region in the in the xy-plane bounded by the triangle with vertices (1, 0), (−1, 0), and (0, 1).
Partition D into four triangular regions using the lines y = 1

2 , y = x, and y = −x. Calculate the smallest
and largest Riemann sums for the function f(x, y) = y − x2 for this partition. Hint: It is rather easy to
find maximum and minimum values of this function if you think about its level curves, especially the one
that passes through (1

2 , 1
2).

This figure shows the partitioned region and some level curves of the function y − x2.

Notice that the level curve where the function equals 1/4 is exactly tangent to y = x at (1
2 , 1

2) (since
the slope of y − x2 is 2x), so the maximum value on the right and left triangles is 1/4, at the points
(±1

2 , 1
2). The maximum on the center triangle is 1/2 at the point (0, 1

2), and the maximum value on
the top triangle is 1 at (0, 1). Since the area of each triangle is 1/4, the maximum Riemann sum is
1
4

(
1 + 1/2 + 1/4 + 1/4

)
= 1/2. Similarly, the minimum value on top triangle is 1/4 at (±1/2, 1/2),

the minimum on the middle triangle is 0 at (0, 0), and on the the right and left triangles is −1, at the
points (±1, 0), so the minimum Riemann sum is 1

4

(
1/4 + 0 + (−1) + (−1)

)
= − 7

16 .


