Instructions: Give brief, clear answers.
I. Use a double integral in polar coordinates to calculate the area bounded by the circle $x^{2}+y^{2}=a x$.
(5) Rewrite the integral $\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-x^{2}}}^{0} f(x, y) d y d x$ to integrate first with respect to x, then with respect to y.
(4)
III. Consider the solid cylinder bounded by $x^{2}+z^{2}=4$ and the planes $y=0$ and $y=1$, and let E be the
(6) points in this solid cylinder that have $z \geq 0$. Suppose that the density of E at a point (x, y, z) equals twice the distance from (x, y, z) to the y-axis. Calculate the mass of E.
IV. Let D be the unit disk in the $x y$-plane. Write an integral in polar coordinates to calculate the surface area (5) of the portion of $z=e^{x^{2}+y^{2}}$ lying above D. Simplify the integrand, and supply limits of integration, but do not continue further in evaluation of the integral.
V. Let D be the unit disk in the $x y$-plane, and consider the function $f(x, y)=\frac{1}{e^{x^{2}+y^{2}}}$, whose values depend
(4) (4) only on r. Obtain a partition of D by cutting it into four quarters, each consisting of the intersection of D with one of the four quadrants. Calculate the smallest and largest Riemann sums for f for this partition.
VI. Calculate the area inside the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ as follows.
(8) (a) Let S be the region bounded by the ellipse. Define ϕ from the $u v$-plane to the $x y$-plane by $\phi(u, v)=$ ($a u, b v$). Determine the region R in the $u v$-plane that corresponds to S under ϕ.
(b) Calculate the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}=\left(\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}\end{array}\right)$ and its determinant.
(c) Write a double integral over the domain S whose value is the area, change it into $u v$-coordinates, and evaluate to find the area.
VII. Consider the function $f(x, y)=x^{4}+y^{4}-4 x y+2$ on the square $D=\{(x, y) \mid-2 \leq x \leq 2,-2 \leq y \leq 2$.
(6) (a) Find all critical points of f on this domain.
(b) Show that extreme values of f on the right-hand vertical boundary side of D can occur only at one of the three points $(2, \pm 2)$ or $(2, \sqrt[3]{2})$.
VIII. The figure to the right shows level curves $f(x, y)=-2$ and
(4) $g(x, y)=4$ of two functions f and g in the $x y$-plane, their intersection point P, and a gradient vector for each of the functions at a point on its level curve. Let h be the function defined by $h(x, y)=f(x, y) g(x, y)$. There are four directions in which one can leave P moving along one of the level curves. For each of them, label whether h is increasing or decreasing as one moves
 away from P in that direction. (Caution: Before answering, think carefully about the way that a product changes when one of the factors is negative.)
IX. Use integration in spherical coordinates to find the volume of the region E bounded by $z=\sqrt{x^{2}+y^{2}}$ and (6) $x^{2}+y^{2}+z^{2}=3$.
X. Let E be the upper hemisphere $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$, and consider the integral $\iiint_{E} f(x, y, z) d V$.
(6) (a) Rewrite the integral in cylindrical coordinates, supplying limits of integration appropriate for E.
(b) Rewrite the integral in spherical coordinates, supplying limits of integration appropriate for E.

