I. Let \vec{F} be the vector field $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$. Verify by calculation (direct or indirect) that $\int_{C} \vec{F} \cdot d \vec{r}$ is (6) not path-independent on the domain $\{(x, y) \mid(x, y) \neq(0,0)\}$.
II. (a) Evaluate the line integral $\int_{C} x y d x+x^{2} y d y$ directly, where C is the triangle with vertices $(0,0),(1,0)$, and $(1,2)$.
(b) Evaluate it using Green's Theorem.
III. The figure to the right shows a vector field $P \vec{\imath}+Q \vec{\jmath}$ on a portion
(7) of the plane. Based on its appearance there:
(a) Explain geometrically why $\frac{\partial P}{\partial x}$ is positive.
(b) Explain geometrically why $\frac{\partial P}{\partial y}$ is negative.
(c) Explain geometrically why $\frac{\partial Q}{\partial x}$ is zero.
(d) Explain geometrically why $\frac{\partial Q}{\partial y}$ is positive.
(e) Determine whether $\operatorname{div}(P \vec{\imath}+Q \vec{\jmath})$ is positive or negative.

(f) Determine whether $\operatorname{curl}(P \vec{\imath}+Q \vec{\jmath}) \cdot \vec{k}$ is positive or negative.
IV. Let f be a scalar function of three variables and let \vec{F} be a vector field on a 3 -dimensional domain. Writing
(6) $\quad \vec{F}$ as $P \vec{\imath}+Q \vec{\jmath}+R \vec{k}$, verify that $\operatorname{div}(f \vec{F})=f \operatorname{div}(\vec{F})+\vec{F} \cdot \nabla f$.
V. (a) Sketch the vector field $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$.
(b) Explain the important phenomenon (related to Clairaut's Theorem) that the vector field $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+$ $\frac{x}{x^{2}+y^{2}} \vec{\jmath}$ illustrates.
VI. Let D be a connected planar domain.
(5) (a) Define what it means to say that D is simply-connected (do better than "no holes").
(b) State the theorem discussed in class that uses the hypothesis that D is simply-connected.
VII. Suppose that $\vec{F}=P \vec{\imath}+Q \vec{\jmath}$ is a vector field on the plane and let C be the unit circle. Suppose that at (6) points on C (but not necessarily on the rest of D), $\vec{F}(x, y)=x \vec{\imath}+y \vec{\jmath}$.
(a) Verifty that on C, \vec{F} equals the outward unit normal \vec{n}.
(b) Calculate $\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A$.
(c) Calculate $\iint_{D} \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} d A$.
VIII. Calculate $\int_{C}(y \vec{\imath}-x \vec{\jmath}) \cdot d \vec{r}$, where C is the equilateral triangle that has one side equal to the straight line
(6) from $(1,1)$ to $(201,1)$ but does not lie completely in the first quadrant.

