I. Let \vec{F} be the vector field $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$. Verify by calculation (direct or indirect) that $\int_{C} \vec{F} \cdot d \vec{r}$ is not path-independent on the domain $\{(x, y) \mid(x, y) \neq(0,0)\}$.

Take C to be the unit circle, on which \vec{F} is simply $-y \vec{\imath}+x \vec{\jmath}$. Here it is the unit tangent vector, since it has length $\sqrt{(-y)^{2}+x^{2}}=1$ and is perpendicular to the position vectors $x \vec{\imath}+y \vec{\jmath}$ which are radii of the circle. So $\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \vec{F} \cdot \vec{T} d s=\int_{C} d s=2 \pi$. Since C is a closed loop, but $\int_{C} \vec{F} \cdot d \vec{r}$ is not 0 , $\int_{C} \vec{F} \cdot d \vec{r}$ is not path-independent. [Of course, one can also calculate directly by parameterizing C as $\vec{r}(t)=\cos (t) \vec{\imath}+\sin (t) \vec{\jmath}$.]
II. (a) Evaluate the line integral $\int_{C} x y d x+x^{2} y d y$ directly, where C is the triangle with vertices $(0,0),(1,0)$, and (1,2).

Let C_{1} be the line segment from $(0,0)$ to $(1,0), C_{2}$ the line segment from $(1,0)$ to $(1,2)$, and C_{3} the line segment from $(1,2)$ to $(0,0)$. On $C_{1}, y=0$ so the integrand is 0 and therefore the integral is 0 . On C_{2}, putting $x=1$ and $y=t$ for $0 \leq t \leq 2$, we have $d x=0 d t, d y=d t$, so $\int_{C_{2}} x y d x+x^{2} y d y=\int_{0}^{2} 0+t d t=$ 2. Parameterizing $-C_{3}$ by $x=t$ and $y=2 t$, we have $\int_{C_{3}} x y d x+x^{2} y d y=-\int_{0}^{1} t \cdot 2 t+t^{2} \cdot 2 t \cdot 2 d t=$ $-\frac{2}{3}-1=-\frac{5}{3}$. Therefore $\int_{C} x y d x+x^{2} y d y=\frac{1}{3}$.
(b) Evaluate it using Green's Theorem.

For the triangle T bounded by $C, \int_{C} x y d x+x^{2} y d y=\iint_{T} \frac{\partial}{\partial x}\left(x^{2} y\right)-\frac{\partial}{\partial y}(x y) d A=\iint_{T} 2 x y-x d A=$ $\int_{0}^{1} \int_{0}^{2 x} 2 x y-x d y d x=\int_{0}^{1} x y^{2}-\left.x y\right|_{0} ^{2 x} d x=\int_{0}^{1} 4 x^{3}-2 x^{2} d x=1-\frac{2}{3}=\frac{1}{3}$.
III. The figure to the right shows a vector field $P \vec{\imath}+Q \vec{\jmath}$ on a portion (7) of the plane. Based on its appearance there:
(a) Explain geometrically why $\frac{\partial P}{\partial x}$ is positive.

As you move to the right, the horizontal components are increasing.
(b) Explain geometrically why $\frac{\partial P}{\partial y}$ is negative.

As you move upward, the horizontal components are decreasing.
(c) Explain geometrically why $\frac{\partial Q}{\partial x}$ is zero.

As you move to the right, the vertical components do not change.
(d) Explain geometrically why $\frac{\partial Q}{\partial y}$ is positive.

As you move upward, the vertical components, although negative, are nonetheless increasing.
(e) Determine whether $\operatorname{div}(P \vec{\imath}+Q \vec{\jmath})$ is positive or negative.
$\operatorname{div}(P \vec{\imath}+Q \vec{\jmath})=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}$ is the sum of two positive terms.
(f) Determine whether $\operatorname{curl}(P \vec{\imath}+Q \vec{\jmath}) \cdot \vec{k}$ is positive or negative. $\operatorname{curl}(P \vec{\imath}+Q \vec{\jmath}) \cdot \vec{k}=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$, with the first term 0 and $\frac{\partial P}{\partial x}$ negative, so $\operatorname{curl}(P \vec{\imath}+Q \vec{\jmath}) \cdot \vec{k}$ is positive.
IV. Let f be a scalar function of three variables and let \vec{F} be a vector field on a 3 -dimensional domain. Writing
(6) $\quad \vec{F}$ as $P \vec{\imath}+Q \vec{\jmath}+R \vec{k}$, verify that $\operatorname{div}(f \vec{F})=f \operatorname{div}(\vec{F})+\vec{F} \cdot \nabla f$.

$$
\operatorname{div}(f \vec{F})=\operatorname{div}(f P \vec{\imath}+f Q \vec{\jmath}+f R \vec{k})=(f P)_{x}+(f Q)_{y}+(f R)_{z}=f_{x} P+f P_{x}+f_{y} Q+f Q_{y}+f_{z} R+f R_{z}=
$$ $f\left(P_{x}+Q_{y}+R_{z}\right)+(P \vec{\imath}+Q \vec{\jmath}+R \vec{k}) \cdot\left(f_{x} \vec{\imath}+f_{y} \vec{\jmath}+f_{z} \vec{k}\right)=f \operatorname{div}(\vec{F})+\vec{F} \cdot \nabla f$.

V. (a) Sketch the vector field $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$.
(see your class notes)
(b) Explain the important phenomenon (related to Clairaut's Theorem) that the vector field $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+$ $\frac{x}{x^{2}+y^{2}} \vec{\jmath}$ illustrates.

It satisfies the necessary condition $\frac{\partial Q}{\partial y}=\frac{\partial P}{\partial x}$ to be conservative, but (as seen in problem I above) it is not conservative on its domain $\mathbb{R}^{2}-\{(0,0)\}$. It illustrates that the hypothesis that the domain is simply-connected is needed for the necessary condition to be sufficient.
VI. Let D be a connected planar domain.
(5) (a) Define what it means to say that D is simply-connected (do better than "no holes").

If C is any simple (no self-crossings) loop in D, then every point in the plane that is enclosed by C is also in D.
(b) State the theorem discussed in class that uses the hypothesis that D is simply-connected.

If D is simply-connected and $P \vec{\imath}+Q \vec{\jmath}$ is a vector field on D that satisfies $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$, then $P \vec{\imath}+Q \vec{\jmath}$ is conservative.
VII. Suppose that $\vec{F}=P \vec{\imath}+Q \vec{\jmath}$ is a vector field on the plane and let C be the unit circle. Suppose that at (6) points on C (but not necessarily on the rest of D), $\vec{F}(x, y)=x \vec{\imath}+y \vec{\jmath}$.
(a) Verifty that on C, \vec{F} equals the outward unit normal \vec{n}.

Since \vec{F} is the position vector of (x, y), that is, it looks like a radius of the circle, it is perpendicular to the circle at the point (x, y). Therefore it is normal and points outward. Also, on C it has length $\sqrt{x^{2}+y^{2}}=1$, so it has unit length.
(b) Calculate $\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A$.

By the Tangential Form for Green's Theorem, we have $\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A=\iint_{D} \operatorname{curl}(\vec{F}) \cdot \vec{k} d A=$ $\int_{C} \vec{F} \cdot \vec{T} d s=\int_{C} 0 d s=0$.
(c) Calculate $\iint_{D} \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} d A$.

By the Normal Form for Green's Theorem, we have $\iint_{D} \frac{\partial P}{\partial x}+\frac{\partial P}{\partial y} d A=\int_{C} \vec{F} \cdot \vec{n} d s=\int_{C} d s=2 \pi$.
VIII. Calculate $\int_{C}(y \vec{\imath}-x \vec{\jmath}) \cdot d \vec{r}$, where C is the equilateral triangle that has one side equal to the straight line
(6) from $(1,1)$ to $(201,1)$ but does not lie completely in the first quadrant.

Let T be the triangle enclosed by C. Using Green's Theorem, $\int_{C} y \vec{\imath} \cdot d \vec{r}=\iint_{T} \frac{\partial(-x)}{\partial x}-\frac{\partial(y)}{\partial y} d A=$ $\iint_{T}-2 d A$, which is -2 times the area of T. Since T has base of length 200, a little geometry shows that the area of T is $(\sqrt{3} / 2)(200)^{2} / 2=10,000 \sqrt{3}$, so the answer is $-20,000 \sqrt{3}$.

