
Mathematics 2443-006H
Examination III
April 27, 2006

Name (please print)

Instructions: Give brief, clear answers. Use Green’s Theorem whenever possible.

I.
(6)

Let ~F be the vector field
−y

x2 + y2
~ı +

x

x2 + y2
~. Verify by calculation (direct or indirect) that

∫
C

~F · d~r is

not path-independent on the domain {(x, y) | (x, y) 6= (0, 0)}.

Take C to be the unit circle, on which ~F is simply −y~ı + x~. Here it is the unit tangent vector, since
it has length

√
(−y)2 + x2 = 1 and is perpendicular to the position vectors x~ı + y~ which are radii of

the circle. So
∫

C

~F · d~r =
∫

C

~F · ~T ds =
∫

C
ds = 2π. Since C is a closed loop, but

∫
C

~F · d~r is not 0,∫
C

~F · d~r is not path-independent. [Of course, one can also calculate directly by parameterizing C as

~r(t) = cos(t)~ı + sin(t)~.]

II.
(12)

(a) Evaluate the line integral
∫

C
xy dx + x2y dy directly, where C is the triangle with vertices (0, 0), (1, 0),

and (1, 2).

Let C1 be the line segment from (0, 0) to (1, 0), C2 the line segment from (1, 0) to (1, 2), and C3 the line
segment from (1, 2) to (0, 0). On C1, y = 0 so the integrand is 0 and therefore the integral is 0. On C2,

putting x = 1 and y = t for 0 ≤ t ≤ 2, we have dx = 0 dt, dy = dt, so
∫

C2

xy dx+x2y dy =
∫ 2

0
0+t dt =

2. Parameterizing −C3 by x = t and y = 2t, we have
∫

C3

xy dx + x2y dy = −
∫ 1

0
t · 2t + t2 · 2t · 2 dt =

−2
3
− 1 = −5

3
. Therefore

∫
C

xy dx + x2y dy =
1
3
.

(b) Evaluate it using Green’s Theorem.

For the triangle T bounded by C,
∫

C
xy dx+x2y dy =

∫∫
T

∂

∂x
(x2y)− ∂

∂y
(xy) dA =

∫∫
T

2xy−x dA =∫ 1

0

∫ 2x

0
2xy − x dy dx =

∫ 1

0
xy2 − xy

∣∣∣2x

0
dx =

∫ 1

0
4x3 − 2x2 dx = 1− 2

3
=

1
3
.

III.
(7)

The figure to the right shows a vector field P~ı + Q~ on a portion
of the plane. Based on its appearance there:

(a) Explain geometrically why
∂P

∂x
is positive.

As you move to the right, the horizontal components are in-
creasing.

(b) Explain geometrically why
∂P

∂y
is negative.

As you move upward, the horizontal components are decreas-
ing.

(c) Explain geometrically why
∂Q

∂x
is zero.

As you move to the right, the vertical components do not
change.
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(d) Explain geometrically why
∂Q

∂y
is positive.

As you move upward, the vertical components, although negative, are nonetheless increasing.

(e) Determine whether div(P~ı + Q~) is positive or negative.

div(P~ı + Q~) =
∂P

∂x
+

∂Q

∂y
is the sum of two positive terms.

(f) Determine whether curl(P~ı + Q~) · ~k is positive or negative.

curl(P~ı + Q~) · ~k =
∂Q

∂x
− ∂P

∂y
, with the first term 0 and

∂P

∂x
negative, so curl(P~ı + Q~) · ~k is positive.

IV.
(6)

Let f be a scalar function of three variables and let ~F be a vector field on a 3-dimensional domain. Writing
~F as P~ı + Q~ + R~k, verify that div(f ~F ) = f div(~F ) + ~F · ∇f .

div(f ~F ) = div(fP~ı+fQ~+fR~k) = (fP )x +(fQ)y +(fR)z = fxP +fPx +fyQ+fQy +fzR+fRz =
f(Px + Qy + Rz) + (P~ı + Q~ + R~k) · (fx~ı + fy~ + fz

~k) = f div(~F ) + ~F · ∇f .

V.
(6)

(a) Sketch the vector field
−y

x2 + y2
~ı +

x

x2 + y2
~.

(see your class notes)

(b) Explain the important phenomenon (related to Clairaut’s Theorem) that the vector field
−y

x2 + y2
~ı +

x

x2 + y2
~ illustrates.

It satisfies the necessary condition
∂Q

∂y
=

∂P

∂x
to be conservative, but (as seen in problem I above) it

is not conservative on its domain R2 − {(0, 0)}. It illustrates that the hypothesis that the domain is
simply-connected is needed for the necessary condition to be sufficient.

VI.
(5)

Let D be a connected planar domain.
(a) Define what it means to say that D is simply-connected (do better than “no holes”).

If C is any simple (no self-crossings) loop in D, then every point in the plane that is enclosed by C is
also in D.

(b) State the theorem discussed in class that uses the hypothesis that D is simply-connected.

If D is simply-connected and P~ı + Q~ is a vector field on D that satisfies
∂Q

∂x
=

∂P

∂y
, then P~ı + Q~ is

conservative.
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VII.
(6)

Suppose that ~F = P~ı + Q~ is a vector field on the plane and let C be the unit circle. Suppose that at
points on C (but not necessarily on the rest of D), ~F (x, y) = x~ı + y~.
(a) Verifty that on C, ~F equals the outward unit normal ~n.

Since ~F is the position vector of (x, y), that is, it looks like a radius of the circle, it is perpendicular
to the circle at the point (x, y). Therefore it is normal and points outward. Also, on C it has length√

x2 + y2 = 1, so it has unit length.

(b) Calculate
∫∫

D

∂Q

∂x
− ∂P

∂y
dA.

By the Tangential Form for Green’s Theorem, we have
∫∫

D

∂Q

∂x
− ∂P

∂y
dA =

∫∫
D

curl(~F ) · ~k dA =∫
C

~F · ~T ds =
∫

C
0 ds = 0.

(c) Calculate
∫∫

D

∂P

∂x
+

∂Q

∂y
dA.

By the Normal Form for Green’s Theorem, we have
∫∫

D

∂P

∂x
+

∂P

∂y
dA =

∫
C

~F · ~n ds =
∫

C
ds = 2π.

VIII.
(6)

Calculate
∫

C
(y~ı − x~) · d~r, where C is the equilateral triangle that has one side equal to the straight line

from (1, 1) to (201, 1) but does not lie completely in the first quadrant.

Let T be the triangle enclosed by C. Using Green’s Theorem,
∫

C
y~ı · d~r =

∫∫
T

∂(−x)
∂x

− ∂(y)
∂y

dA =∫∫
T
−2 dA, which is −2 times the area of T . Since T has base of length 200, a little geometry shows

that the area of T is (
√

3/2)(200)2/2 = 10, 000
√

3, so the answer is −20, 000
√

3.


