Math 2513 homework

16. $(3 / 9)$ Give formal proofs that the following functions are onto:
(i) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=7 x-4$.
(ii) $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ defined by $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
17. $(3 / 9)$ Give formal proofs that the following functions are not onto:
(i) $f: \mathbb{R}-\{n \pi \mid n \in \mathbb{Z}\} \rightarrow \mathbb{R}$ defined by $f(x)=\csc (x)$.
(ii) $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
18. (3/9) Give formal proofs that the following functions are injective:
(i) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=7 x-4$.
(ii) $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ defined by $f(x, y)=(2 x+y, x+y)$.
19. (3/9) Give formal proofs that the following functions are not injective:
(i) $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(m, n)=m n$.
(ii) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}-3 x+4$.
20. (3/9) 1.8 \# 16
21. $(3 / 30) 1.8 \# 17,25,31$
22. (3/30) 1.8 \# 26 (The answer is "yes" - assume that f and $f \circ g$ are injective and deduce that g is injective. Did you even need the assumption that f was injective?), 27 (The answer is "no". There are many examples of f and g for which the assertion is false - one such example can be given using squaring function with various domains and codomains)
23. (3/30) 1.8 \# 34 ("inverse image" is what I called "preimage of a set"), 35 (the "floor" function $\rfloor: \mathbb{R} \rightarrow \mathbb{Z}$ is defined by putting $\lfloor x\rfloor$ equal to the largest integer that is less than or equal to x), 36 (it is convenient to use the observation that $x \in f^{-1}(B) \Leftrightarrow$ $f(x) \in B$)
24. (3/30) $2.4 \# 2,4,6,7,8$ (if you want, use a Google search to find a list of primes), 12, 13
25. (4/13) Know Euclid's proof that there are infinitely many primes.
26. (4/13) Prove that $a|n \Leftrightarrow a|-n$.
27. (4/13) $2.4 \# 16,17$
