Math 2513 homework

28. (4/13) $2.4 \# 28,30,38-40$
29. $(4 / 13)$ Prove the following.
(a) $\forall a \in \mathbb{Z}, a \equiv a \bmod m$.
(b) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, a \equiv b \bmod m \Rightarrow b \equiv a \bmod m$.
(c) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, \forall c \in \mathbb{Z},(a \equiv b \bmod m \wedge b \equiv c \bmod m) \Rightarrow a \equiv c \bmod m$.
30. $(4 / 13)$ Let p be prime.
(a) Prove that $\operatorname{gcd}(a, p)=1$ if and only if p does not divide a.
(b) Using a fact presented in class, prove that if $c \not \equiv 0 \bmod p$ and $a c \equiv b c \bmod p$, then $a \equiv b \bmod p$. (That is, when working "mod a prime", one can always cancel nonzero common factors from both sides of an equation.)
31. $(4 / 13) 2.5 \# 22$
32. $(4 / 13) 3.2$ \# 31
33. $(4 / 13) 3.2$ \# 38 (arrange the pairs (m, n) analogously to the way we arranged the positive fractions when proving that \mathbb{Q} is countable)
34. $(4 / 13)$ Let S be the set of sequences of 0's and 1's, $S=\left\{a_{1} a_{2} a_{3} \cdots \mid a_{i} \in\{0,1\}\right\}$. A typical element of S is $00101101100011010 \cdots$. Adapt the proof that \mathbb{R} is uncountable to prove that S is uncountable.
35. Let X be a set.
(a) Prove that there does not exist a surjective function from X to $\mathcal{P}(X)$.
(b) Prove that if X is nonempty, then there exists a surjective function from $\mathcal{P}(X)$ to X.
36. $3.3 \# 7,10,12,20$ (give 3 proofs: 1. using induction, 2. using congruence, and 3. deduce it from the fact, proven in class, that $\left.3 \mid n^{3}-n\right), 23,41,52$
37. $4.1 \# 2,3,7-9$
38. 4.1 \# 28, 29, 32, 33, 36
39. $4.2 \# 3,8$
40. 4.2 \# 13, 14, 20, 21, 22, 31
41. $4.3 \# 1,8,9,25,26$
42. 4.4 \# (don't worry about these for the final exam, do them for fun over the summer) 3, 4, 12, 21a), 30, 31 Hint: \# 31 follows almost immediately from the identity $0=$ $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}$
