Mathematics	2513-001
-------------	----------

Examination I Form A

February 14, 2006

Instructions: Give brief, clear answers.

I. Write the following as an implication: " $a^2 \ge 2$ for at most one a".

(2) **II**.

Using step-by-step logic, simplify the following expression: $\neg(\neg R \land \exists z, (Q(z) \Rightarrow P(z))$

(3)

 $\dot{\mathbf{III}}$. Give the general form of a proof by contradiction. That is, if the statement to be proven is P, give the main

Name (please print)

- (4) steps in the logical structure of the proof. Briefly explain why the argument proves the original assertion.
- IV. In this problem, you may take as known the fact that $\sqrt{2}$ is irrational.
- (9) (a) Prove that the difference of two rational numbers must be rational (that is, that if x and y are rational, then x y is rational).
 - (b) Prove that the sum of a rational number and an irrational number must be irrational.
 - (c) Give a counterexample to: The difference of two irrational numbers must be irrational.
- V. Write the following statement in logical notation (and simplified so that it does not involve the negation
- (3) symbol \neg) using the universal set $\mathcal{U} = \mathbb{Z}$: There is a positive integer that is not the sum of the squares of three integers.
- **VI**. Write each of the following as either $A \Rightarrow B$ or $B \Rightarrow A$:
- (3) (i) A is necessary for B
 - (ii) A, when B
 - (iii) whenever A, B
- **VII.** Let M(p,m) be "Person p has seen the movie m." Write each of the following statements in logical
- (5) notation, putting in all necessary quantifiers using the sets \mathcal{P} of all people and \mathcal{M} of all movies. If your answer involves a negation, simplify as much as possible.
 - (a) Jeff has seen every movie.
 - (b) Jack has never seen a movie.
 - (c) Mary has seen every movie that Fred has seen.
 - (d) Everyone has seen at least one movie.
 - (e) Between the two of them, Ellen and Max have seen every movie.

VIII. Use a truth table to verify the tautology $(\neg Z \Rightarrow (X \land \neg X)) \Rightarrow Z$.

(4)

- \overrightarrow{IX} . Assuming that the universal set is $\mathcal{U} = \mathbb{R}$, prove (if the statement is true) or disprove (if the statement is
- (8) false) each of the following statements.
 - 1. $\forall x, (x > 0 \Rightarrow x > 1)$
 - $2. \ \exists x, (x > 0 \Rightarrow x > 1)$
 - 3. $\forall x, (x > 1 \Rightarrow x > 0)$
 - $4. \ \exists x, (x > 1 \Rightarrow x > 0)$
- **X**. Assuming that the universal set is $\mathcal{U} = \mathbb{R}$, prove the statement $\forall x, \exists y, x > y$.

(3)

- \overrightarrow{XI} . This problem concerns the following statement about integers: "If 5n + 4 is even, then n is even."
- (6) (a) Prove the statement by arguing the contrapositive.
 - (b) Prove the statement using proof by contradiction.