March 23, 2006

Instructions: Give brief, clear answers. "Prove" means "give an argument". In giving definitions, give the *precise* definition, using logical notation and/or set notation as appropriate.

I. Write the following as an implication: " $a^2 > 2$ for at most one a".

$$(2) (a^2 > 2 \land b^2 > 2) \Rightarrow a = b$$

- II. Let T(p,c) be "Person p has traveled to the city c." Write each of the following statements in logical
- (4) notation, putting in all necessary quantifiers using the sets \mathcal{P} of all people and \mathcal{C} of all destination cities. If your answer involves a negation, simplify as much as possible.
 - (a) Jeff has been to Madrid or Paris.

$$T(Jeff, Madrid) \vee T(Jeff, Paris)$$

(b) No one has traveled to every city.

$$\neg \exists p \in \mathcal{P}, \forall c \in \mathcal{C}, T(p, c), \text{ which simplifies to } \forall p \in \mathcal{P}, \exists c \in \mathcal{C}, \neg T(p, c),$$

(c) Everyone has traveled to at least one city.

$$\forall p \in \mathcal{P}, \exists c \in \mathcal{C}, T(p, c),$$

(d) Any two people have traveled to at least one city in common.

$$\forall p \in \mathcal{P}, \forall q \in \mathcal{P}, \exists c \in \mathcal{C}, (T(p,c) \land T(q,c))$$

- **III.** Write out all elements of $\mathcal{P}(\{a,b\})$ and all elements of $\mathcal{P}(\{a,b\}) \times \{a,b,c\}$.
- $\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$ $\mathcal{P}(\{a,b\}) \times \{a,b,c\} = \{(\emptyset,a), (\emptyset,b), (\emptyset,c), (\{a\},a), (\{a\},b), (\{a\},c), (\{b\},a), (\{b\},b), (\{a,b\},c)\}$ $(\{a,b\},b), (\{a,b\},c)\}$
- IV. For the function $G: s \to t$ (where s and t are sets), give definitions of the following. As requested in the instructions, give the *precise* definitions, using logical notation and/or set notation as appropriate.
 - (a) the range of G

$$\{G(x) \mid x \in s\}$$

(b) the preimage of an element T of t

$$\{x \in s \mid G(x) = T\}$$

(c) the inverse function G^{-1} , assuming that G is bijective (part of giving the definition of a function is telling its domain and codomain).

$$G^{-1}$$
: $t \to s$ is defined by $G^{-1}(y) = x \Leftrightarrow G(x) = y$

(d) the composition $H \circ G$, assuming that $H : t \to u$ (part of giving the definition of a function is telling its domain and codomain).

$$H \circ G \colon s \to u$$
 is defined by $H \circ G(x) = H(G(x))$

(e) G = K, where $K : u \to v$

$$G = K$$
 when $s = u$, $t = v$, and $\forall x \in s$, $G(x) = K(x)$

(f) the graph of G

$$\{(x, G(x)) \mid x \in s\}$$
, a subset of $s \times t$.

- \mathbf{V} . Let X be an infinite set.
- (4) (a) Define what it means to say that X is countable.

X is countable where there exists a bijective function from \mathbb{N} to X.

(b) Show a function that verifies that \mathbb{Z} is countable.

A bijective function from \mathbb{N} to \mathbb{Z} is given by using the pattern

$$1 \mapsto 0$$
,

$$2 \mapsto 1, 3 \mapsto -1,$$

$$4 \mapsto 2, 5 \mapsto -2,$$

$$6 \mapsto 3, 7 \mapsto -3,$$

$$8 \mapsto 4, 9 \mapsto -4,$$

and so on.

VI. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective.

- Assume that f and g are injective. Let $x_1, x_2 \in X$ and assume that $g \circ f(x_1) = g \circ f(x_2)$. This says that $g(f(x_1)) = g(f(x_2))$. Since g is injective, this implies that $f(x_1) = f(x_2)$. Since f is injective, this implies that $x_1 = x_2$.
- **VII.** Let $f: (0, \pi) \to (0, \infty)$ be the function defined by $f(x) = \csc(x)$, where the cosecant function is as usual given by $\csc(x) = \frac{1}{\sin(x)}$.
 - (a) Prove that f is not injective.

$$f(\pi/4) = \frac{1}{1/\sqrt{2}} = \sqrt{2}$$
 and $f(3\pi/4) = \frac{1}{1/\sqrt{2}} = \sqrt{2}$, but $\pi/4 \neq 3\pi/4$.

(b) Prove that f is not surjective.

Consider 1/2, an element of the codomain $(0, \infty)$. For all $x \in (0, \pi)$, $0 < \sin(x) \le 1$, so $1 \le \csc(x)$. Therefore $\csc(x) \ne 1/2$.

(Alternatively, we can use proof by contradiction: Suppose for contradiction that there exists $x \in (0,\pi)$ such that $\csc(x) = 1/2$. Then $1/\sin(x) = 1/2$ so $\sin(x) = 2$, contradicting the fact that $-1 \le \sin(x) \le 1$ for all x.)

VIII. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be the function defined by $f(m,n) = m^2 - n$. Prove that f is surjective.

(4) Let
$$k \in \mathbb{Z}$$
. Then, $f(0, -k) = 0^2 - (-k) = k$.

- **IX**. Disprove the following assertion: for all sets A, B, and C, if $A \cap B = A \cap C$, then B = C.
- (3) Put $A = \{1\}$, $B = \{1, 2\}$, and $C = \{1, 3\}$. Then $A \cap B = \{1\}$ and $A \cap C = \{1\}$, but $B \neq C$.
- ${\bf X}.$ Give an example of a function from $\mathbb R$ to $\mathbb R$ that is injective but not surjective.
- The exponential function e^x and the inverse tangent function $\tan^{-1}(x)$ are perhaps the most familiar of many possible examples.

XI. Let $A = \mathbb{R}$ and $B = \mathbb{Z}$. Give examples of each of the following.

(3) (a) An element of $A \times B$ that is not in $B \times B$.

(1/2, 1)

(b) An element of $B \times A$ that is not in $B \times B$.

(1, 1/2)

(c) An element of $A \times A$ that is neither in $A \times B$ nor in $B \times A$.

(1/2, 1/2)