Instructions: Give brief, clear answers. "Prove" means "give an argument". In giving definitions, give the precise definition, using logical notation and/or set notation as appropriate.
I. Write the following as an implication: " $a^{2} \geq 2$ for at most one a ".

$$
\begin{equation*}
\left(a^{2} \geq 2 \wedge b^{2} \geq 2\right) \Rightarrow a=b \tag{2}
\end{equation*}
$$

II. Let $T(p, c)$ be "Person p has traveled to the city $c . "$ Write each of the following statements in logical (4) notation, putting in all necessary quantifiers using the sets \mathcal{P} of all people and \mathcal{C} of all destination cities. If your answer involves a negation, simplify as much as possible.
(a) Jeff has been to Madrid or Paris.
$T($ Jeff, Madrid $) \vee T($ Jeff, Paris $)$
(b) No one has traveled to every city.
$\neg \exists p \in \mathcal{P}, \forall c \in \mathcal{C}, T(p, c)$, which simplifies to $\forall p \in \mathcal{P}, \exists c \in \mathcal{C}, \neg T(p, c)$,
(c) Everyone has traveled to at least one city.

$$
\forall p \in \mathcal{P}, \exists c \in \mathcal{C}, T(p, c)
$$

(d) Any two people have traveled to at least one city in common.

$$
\forall p \in \mathcal{P}, \forall q \in \mathcal{P}, \exists c \in \mathcal{C},(T(p, c) \wedge T(q, c))
$$

III. Write out all elements of $\mathcal{P}(\{a, b\})$ and all elements of $\mathcal{P}(\{a, b\}) \times\{a, b, c\}$.
(4)

$$
\begin{aligned}
& \mathcal{P}(\{a, b\})=\{\emptyset,\{a\},\{b\},\{a, b\}\} \\
& \mathcal{P}(\{a, b\}) \times\{a, b, c\}=\{(\emptyset, a),(\emptyset, b),(\emptyset, c),(\{a\}, a),(\{a\}, b),(\{a\}, c),(\{b\}, a),(\{b\}, b),(\{b\}, c),(\{a, b\}, a), \\
& (\{a, b\}, b),(\{a, b\}, c)\}
\end{aligned}
$$

IV. For the function $G: s \rightarrow t$ (where s and t are sets), give definitions of the following. As requested in the
(10) instructions, give the precise definitions, using logical notation and/or set notation as appropriate.
(a) the range of G

$$
\{G(x) \mid x \in s\}
$$

(b) the preimage of an element T of t

$$
\{x \in s \mid G(x)=T\}
$$

(c) the inverse function G^{-1}, assuming that G is bijective (part of giving the definition of a function is telling its domain and codomain).

$$
G^{-1}: t \rightarrow s \text { is defined by } G^{-1}(y)=x \Leftrightarrow G(x)=y
$$

(d) the composition $H \circ G$, assuming that $H: t \rightarrow u$ (part of giving the definition of a function is telling its domain and codomain).

$$
H \circ G: s \rightarrow u \text { is defined by } H \circ G(x)=H(G(x))
$$

(e) $G=K$, where $K: u \rightarrow v$

$$
G=K \text { when } s=u, t=v, \text { and } \forall x \in s, G(x)=K(x)
$$

(f) the graph of G
$\{(x, G(x)) \mid x \in s\}$, a subset of $s \times t$.
V. Let X be an infinite set.
(4) (a) Define what it means to say that X is countable.
X is countable where there exists a bijective function from \mathbb{N} to X.
(b) Show a function that verifies that \mathbb{Z} is countable.

A bijective function from \mathbb{N} to \mathbb{Z} is given by using the pattern
$1 \mapsto 0$,
$2 \mapsto 1,3 \mapsto-1$,
$4 \mapsto 2,5 \mapsto-2$,
$6 \mapsto 3,7 \mapsto-3$,
$8 \mapsto 4,9 \mapsto-4$,
and so on.
VI. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective.

Assume that f and g are injective. Let $x_{1}, x_{2} \in X$ and assume that $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$. This says that $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Since g is injective, this implies that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since f is injective, this implies that $x_{1}=x_{2}$.
VII. Let $f:(0, \pi) \rightarrow(0, \infty)$ be the function defined by $f(x)=\csc (x)$, where the cosecant function is as usual given by $\csc (x)=\frac{1}{\sin (x)}$.
(a) Prove that f is not injective.

$$
f(\pi / 4)=\frac{1}{1 / \sqrt{2}}=\sqrt{2} \text { and } f(3 \pi / 4)=\frac{1}{1 / \sqrt{2}}=\sqrt{2}, \text { but } \pi / 4 \neq 3 \pi / 4 .
$$

(b) Prove that f is not surjective.

Consider $1 / 2$, an element of the codomain $(0, \infty)$. For all $x \in(0, \pi), 0<\sin (x) \leq 1$, so $1 \leq \csc (x)$. Therefore $\csc (x) \neq 1 / 2$.
(Alternatively, we can use proof by contradiction: Suppose for contradiction that there exists $x \in$ $(0, \pi)$ such that $\csc (x)=1 / 2$. Then $1 / \sin (x)=1 / 2$ so $\sin (x)=2$, contradicting the fact that $-1 \leq \sin (x) \leq 1$ for all x.)
VIII. Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ be the function defined by $f(m, n)=m^{2}-n$. Prove that f is surjective.

Let $k \in \mathbb{Z}$. Then, $f(0,-k)=0^{2}-(-k)=k$.
IX. Disprove the following assertion: for all sets A, B, and C, if $A \cap B=A \cap C$, then $B=C$.

Put $A=\{1\}, B=\{1,2\}$, and $C=\{1,3\}$. Then $A \cap B=\{1\}$ and $A \cap C=\{1\}$, but $B \neq C$.
X. Give an example of a function from \mathbb{R} to \mathbb{R} that is injective but not surjective.

The exponential function e^{x} and the inverse tangent function $\tan ^{-1}(x)$ are perhaps the most familiar of many possible examples.
XI. Let $A=\mathbb{R}$ and $B=\mathbb{Z}$. Give examples of each of the following.
(3) (a) An element of $A \times B$ that is not in $B \times B$.
$(1 / 2,1)$
(b) An element of $B \times A$ that is not in $B \times B$.
$(1,1 / 2)$
(c) An element of $A \times A$ that is neither in $A \times B$ nor in $B \times A$.
(1/2, 1/2)

