Instructions: Give brief, clear answers. "Prove" means "give an argument". In giving definitions, give the *precise* definition, using logical notation and/or set notation as appropriate.

- I. Write the following as an implication: " $b^2 \ge 2$ for at most one b".
- (2)
- II. Let T(p,c) be "Person p has traveled to the city c." Write each of the following statements in logical
- (4) notation, putting in all necessary quantifiers using the sets \mathcal{P} of all people and \mathcal{C} of all destination cities. If your answer involves a negation, simplify as much as possible.
 - (a) Joan has been to Paris or London.
 - (b) Everyone has traveled to at least one city.
 - (c) No one has traveled to every city.
 - (d) Any two people have traveled to at least one city in common.
- **III.** For the function $H: s \to t$ (where s and t are sets), give definitions of the following. As requested in the (10) instructions, give the *precise* definitions, using logical notation and/or set notation as appropriate.
 - (a) the range of H
 - (b) the preimage of an element T of t

(c) the inverse function H^{-1} , assuming that N is bijective (part of giving the definition of a function is telling its domain and codomain).

(d) the composition $G \circ H$, assuming that $G: t \to u$ (part of giving the definition of a function is telling its domain and codomain).

- (e) H = K, where $K \colon u \to v$
- (f) the graph of H
- **IV**. Let X be an infinite set.
- (4) (a) Define what it means to say that X is *countable*.
 - (b) Show a function that verifies that \mathbb{Z} is countable.
- **V**. Write out all elements of $\mathcal{P}(\{1,2\})$ and all elements of $\mathcal{P}(\{1,2\}) \times \{1,2,3\}$.
- (4) **VI**. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be the function defined by $f(m, n) = m^2 - n$. Prove that f is surjective.

(4) **VII.** Let $f: X \to Y$ and $g: Y \to Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective.

(4) **VIII**. Disprove the following assertion: for all sets A, B, and C, if $A \cap C = B \cap C$, then A = B.

- (3) **IX.** Let $f: (0, \pi) \to (0, \infty)$ be the function defined by $f(x) = \csc(x)$, where the cosecant function is as usual (8) given by $\csc(x) = \frac{1}{\sin(x)}$.
 - (a) Prove that f is not injective.
 - (b) Prove that f is not surjective.
- $\mathbf{X}. \qquad \text{Give an example of a function from } \mathbb{R} \text{ to } \mathbb{R} \text{ that is injective but not surjective.}$
- (4)
- **XI**. Let $A = \mathbb{R}$ and $B = \mathbb{Z}$. Give examples of each of the following.
- (3) (a) An element of $A \times B$ that is not in $B \times B$.
 - (b) An element of $B \times A$ that is not in $B \times B$.
 - (c) An element of $A \times A$ that is neither in $A \times B$ nor in $B \times A$.