Instructions: Give brief, clear answers. "Prove" means "give an argument". In giving definitions, give the *precise* definition, using logical notation and/or set notation as appropriate.

I. Write the following as an implication: " $b^2 \ge 2$ for at most one b".

c

(2)
$$(b^2 \ge 2 \land c^2 \ge 2) \Rightarrow b =$$

II. Let T(p,c) be "Person p has traveled to the city c." Write each of the following statements in logical

- (4) notation, putting in all necessary quantifiers using the sets \mathcal{P} of all people and \mathcal{C} of all destination cities. If your answer involves a negation, simplify as much as possible.
 - (a) Joan has been to Paris or London.

 $T(\text{Joan, Paris}) \lor T(\text{Joan, London})$

(b) Everyone has traveled to at least one city.

 $\forall p \in \mathcal{P}, \exists c \in \mathcal{C}, T(p, c),$

(c) No one has traveled to every city.

 $\neg \exists p \in \mathcal{P}, \forall c \in \mathcal{C}, T(p, c), \text{ which simplifies to } \forall p \in \mathcal{P}, \exists c \in \mathcal{C}, \neg T(p, c), \end{cases}$

(d) Any two people have traveled to at least one city in common.

 $\forall p \in \mathcal{P}, \forall q \in \mathcal{P}, \exists c \in \mathcal{C}, (T(p,c) \land T(q,c))$

- **III.** For the function $H: s \to t$ (where s and t are sets), give definitions of the following. As requested in the (10) instructions, give the *precise* definitions, using logical notation and/or set notation as appropriate.
 - (a) the range of H

 $\{H(x) \mid x \in s\}$

(b) the preimage of an element T of t

$$\{x \in s \mid H(x) = T\}$$

(c) the inverse function H^{-1} , assuming that N is bijective (part of giving the definition of a function is telling its domain and codomain).

 H^{-1} : $t \to s$ is defined by $H^{-1}(y) = x \Leftrightarrow H(x) = y$

(d) the composition $G \circ H$, assuming that $G: t \to u$ (part of giving the definition of a function is telling its domain and codomain).

 $G \circ H \colon s \to u$ is defined by $G \circ H(x) = G(H(x))$

(e) H = K, where $K \colon u \to v$

H = K when s = u, t = v, and $\forall x \in s, H(x) = K(x)$

(f) the graph of H

 $\{(x, H(x)) \mid x \in s\}$, a subset of $s \times t$.

(4)

- **IV**. Let X be an infinite set.
- (4) (a) Define what it means to say that X is *countable*.

X is *countable* where there exists a bijective function from \mathbb{N} to X.

(b) Show a function that verifies that \mathbb{Z} is countable.

A bijective function from \mathbb{N} to \mathbb{Z} is given by using the pattern $1 \mapsto 0$, $2 \mapsto 1, 3 \mapsto -1$, $4 \mapsto 2, 5 \mapsto -2$, $6 \mapsto 3, 7 \mapsto -3$, $8 \mapsto 4, 9 \mapsto -4$, and so on.

V. Write out all elements of $\mathcal{P}(\{1,2\})$ and all elements of $\mathcal{P}(\{1,2\}) \times \{1,2,3\}$.

 $\begin{aligned} \mathcal{P}(\{1,2\}) &= \{ \emptyset, \{1\}, \{2\}, \{1,2\} \} \\ \mathcal{P}(\{1,2\}) \times \{1,2,3\} &= \{ (\emptyset,1), (\emptyset,2), (\emptyset,3), (\{1\},1), (\{1\},2), (\{1\},3), (\{2\},1), (\{2\},2), (\{2\},3), (\{1,2\},1), (\{1,2\},2), (\{1,2\},3) \} \end{aligned}$

VI. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be the function defined by $f(m, n) = m^2 - n$. Prove that f is surjective.

(4) Let
$$k \in \mathbb{Z}$$
. Then, $f(0, -k) = 0^2 - (-k) = k$.

VII. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective. (4) Assume that f and g are injective. Let $x_1, x_2 \in X$ and assume that $g \circ f(x_1) = g \circ f(x_2)$. This says that $g(f(x_1)) = g(f(x_2))$. Since g is injective, this implies that $f(x_1) = f(x_2)$. Since f is injective, this implies that $x_1 = x_2$.

VIII. Disprove the following assertion: for all sets A, B, and C, if $A \cap C = B \cap C$, then A = B. (3) Put $A = \{1, 2\}, B = \{1, 3\}, \text{ and } C = \{1\}$. Then $A \cap C = \{1\}$ and $B \cap C = \{1\}, \text{ but } A \neq B$.

IX. Let $f: (0, \pi) \to (0, \infty)$ be the function defined by $f(x) = \csc(x)$, where the cosecant function is as usual (8) given by $\csc(x) = \frac{1}{\sin(x)}$.

(a) Prove that f is not injective.

$$f(\pi/4) = \frac{1}{1/\sqrt{2}} = \sqrt{2}$$
 and $f(3\pi/4) = \frac{1}{1/\sqrt{2}} = \sqrt{2}$, but $\pi/4 \neq 3\pi/4$

(b) Prove that f is not surjective.

Consider 1/2, an element of the codomain $(0, \infty)$. For all $x \in (0, \pi)$, $0 < \sin(x) \le 1$, so $1 \le \csc(x)$. Therefore $\csc(x) \ne 1/2$.

(Alternatively, we can use proof by contradiction: Suppose for contradiction that there exists $x \in (0,\pi)$ such that $\csc(x) = 1/2$. Then $1/\sin(x) = 1/2$ so $\sin(x) = 2$, contradicting the fact that $-1 \leq \sin(x) \leq 1$ for all x.)

X. Give an example of a function from \mathbb{R} to \mathbb{R} that is injective but not surjective.

The exponential function e^x and the inverse tangent function $\tan^{-1}(x)$ are perhaps the most familiar of many possible examples.

(4)

- (3) (a) An element of $A \times B$ that is not in $B \times B$.
 - (1/2, 1)
 - (b) An element of $B \times A$ that is not in $B \times B$.
 - (1, 1/2)
 - (c) An element of $A \times A$ that is neither in $A \times B$ nor in $B \times A$.

(1/2, 1/2)