Instructions: Give brief, clear answers. "Prove" means "give an argument".

I. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective.

II. Prove that if $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$.

- **III**. Give Euclid's proof that there are infinitely many primes.
- (4)

(4)

(4)

(4)

- **IV**. State the Fundamental Theorem of Arithmetic.
- **V**. (a) Show that $ac \equiv bc \mod m$ and $c \not\equiv 0 \mod m$ does not always imply that $a \equiv b \mod m$.
- (4) (b) Tell without proof a condition (which always holds when m is prime and $c \neq 0 \mod m$) that ensures that $ac \equiv bc \mod m$ does imply that $a \equiv b \mod m$.
- **VI**. Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$ whenever *n* is a positive integer.
- (5)

VII. Let X be the set of all infinite sequences in which each term is one of the letters a, b, or c. Some elements

VIII. Let Y be the set of all positive fractions (not rational numbers, so $\frac{1}{2}$ and $\frac{2}{4}$ are different fractions). Using (4) Cantor's idea, prove that Y is countable.

IX. Let B be a nonempty set, so that we can choose an element b_0 of B. Prove that there exists a surjective (4) function from $\mathcal{P}(B)$ to B.

- **X**. Let a, b, and c be integers. Using the definition of "divides", prove that if a|b and b|c, then a|c. (4)
- **XI**. Let Z be an infinite set.
- **XII.** Let *m* and *n* be two positive integers. Show that if mn = 360 and the least common multiple of *m* and *n*
- (4) is 10 times their greatest common divisor, then both m and n are divisible by 6.