Instructions: Give brief, clear answers. "Prove" means "give an argument".

I. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective.

Assume that f and g are injective. Let $x_1, x_2 \in X$ and assume that $g \circ f(x_1) = g \circ f(x_2)$. This says that $g(f(x_1)) = g(f(x_2))$. Since g is injective, this implies that $f(x_1) = f(x_2)$. Since f is injective, this implies that $x_1 = x_2$.

II. Prove that if $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$.

(4)

(4)

(4)

Assume that $a \equiv b \mod m$ and $b \equiv c \mod m$. Then, $m|a - b \mod m|b - c$, so m|(a - b) + (b - c). Since this says that m|a - c, we have $a \equiv c \mod m$.

III. Give Euclid's proof that there are infinitely many primes.

Suppose for contradiction that there are only finitely many primes, say p_1, p_2, \ldots, p_k . Put $N = p_1 p_2 \cdots p_k + 1$. Notice that no p_i divides N.

If N is prime, then it is a prime different from any of the p_i , a contradiction. If N is composite, the Fundamental Theorem of Arithmetic ensures that we can write it as $N = q_1 q_2 \cdots q_m$. But then, q_1 is a prime which divides N, so q_1 is a prime which is not equal to any of the p_i , again contradicting the fact that p_1, p_2, \ldots, p_k are the only primes.

[Of course, as seen in class there are several other reasonable ways to write this proof.]

IV. State the Fundamental Theorem of Arithmetic.

Any integer greater than 1 can be written as a product of prime factors. If the factors are written in nondecreasing order, then this factorization is unique.

V. (a) Show that $ac \equiv bc \mod m$ and $c \not\equiv 0 \mod m$ does not always imply that $a \equiv b \mod m$.

(4)

(4)

 $1 \cdot 2 \equiv 3 \cdot 2 \mod 4$ and $2 \not\equiv 0 \mod 4$, but $1 \not\equiv 3 \mod 4$.

(b) Tell without proof a condition (which always holds when m is prime and $c \not\equiv 0 \mod m$) that ensures that $ac \equiv bc \mod m$ does imply that $a \equiv b \mod m$.

gcd(c,m) = 1.

VI. Prove that $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1$ whenever *n* is a positive integer.

(5)

For n = 1, we have $1 \cdot 1! = 1 \cdot 1 = 1$ and (1+1)! - 1 = 2 - 1 = 1, so the assertion is true for n = 1. Inductively, assume that $1 \cdot 1! + 2 \cdot 2! + \dots + k \cdot k! = (k+1)! - 1$. Then, $1 \cdot 1! + 2 \cdot 2! + \dots + k \cdot k! + (k+1) \cdot (k+1)! = (k+1)! - 1 + (k+1) \cdot (k+1)! = (1 + (k+1)) \cdot (k+1)! - 1 = (k+2) \cdot (k+1)! - 1 = (k+2)! - 1$.

Suppose for contradiction that there exists a surjective function $f: \mathbb{N} \to X$. List the elements f(1), $f(2), \ldots$ as

 $f(1) = x_{11}x_{12}x_{13}\cdots$ $f(2) = x_{21}x_{22}x_{23}\cdots$ $f(3) = x_{31}x_{32}x_{33}\cdots$ \vdots

Define a sequence $x = x_1 x_2 x_3 \cdots$ in X by $x_i = a$ if $x_{ii} = b$ or $x_{ii} = c$, and $x_i = b$ if $x_{ii} = a$. For all n, $x_n \neq x_{nn}$ so $x \neq f(n)$. Therefore x is an element of X which is not in the range of f, contradicting the fact that f is surjective.

VIII. Let Y be the set of all positive fractions (not rational numbers, so $\frac{1}{2}$ and $\frac{2}{4}$ are different fractions). Using (4) Cantor's idea, prove that Y is countable.

Arrange the fractions m/n with $m, n \in \mathbb{N}$ is an infinite array:

The Cantor method of going up and down the diagonals allows us to turn this into a single list: $1/1, 1/2, 2/1, 3/1, 2/2, 1/3, 1/4, 2/3, 3/2, 4/1, \ldots$ Then, we define a bijection from \mathbb{N} to the set of positive fractions by sending n to the n^{th} fraction in this list.

IX. Let B be a nonempty set, so that we can choose an element b_0 of B. Prove that there exists a surjective (4) function from $\mathcal{P}(B)$ to B.

Define $f: \mathcal{P}(B) \to B$ by the rule that f(S) = b if S is of the form $\{b\}$, and $f(S) = b_0$ if S does not have cardinality 1. This is surjective, since if b is any element of B, then $f(\{b\}) = b$, so b is in the range of f.

X. Let a, b, and c be integers. Using the definition of "divides", prove that if a|b and b|c, then a|c.

Assume that a|b and b|c. Then there exists some n such that b = na, and there exists some m so that c = mb. Therefore c = mb = (mn)a, so a|c.

(4)

- **XI**. Let Z be an infinite set.
- (5) (a) Informally, saying that Z is countable means that it is possible to list the elements of Z. This is not a real definition, since the word "list" is not precise. Give the formal definition of "Z is countable."

Z is *countable* when there exists a bijective function from \mathbb{N} to Z.

Define $f: \mathbb{N} \to Z$ by $f(n) = aaaaaaa \cdots aaaabaaaa \cdots$, where the *b* is in the n^{th} place. This is injective, since if f(m) = f(n) then the *b* appears in the m^{th} position and the n^{th} position, and as there is only one *b* we must have m = n. Also, it is surjective, since if $aaaaaaaa\cdots aaaabaaaa\cdots$ is any sequence in *Z*, then putting *n* equal to the place in which the *b* occurs, this sequence is f(n).

XII. Let m and n be two positive integers. Show that if mn = 360 and the least common multiple of m and n (4) is 10 times their greatest common divisor, then both m and n are divisible by 6.

In general, mn = lcm(m, n) gcd(m, n), and in this case we have lcm(m, n) = 10 gcd(m, n), so $mn = 10 \text{ gcd}(m, n)^2$. Since mn = 360, this says that $\text{gcd}(m, n)^2 = 36$, so gcd(m, n) = 6. Therefore 6 divides both m and n. [Possibilities for $\{m, n\}$ are $\{6, 60\}$ and $\{12, 30\}$.]