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Name (please print)

Instructions: Give brief, clear answers. “Prove” means “give an argument”.

I.
(4)

Let f : X → Y and g : Y → Z. Prove that if f and g are injective, then the composition g ◦ f is injective.

Assume that f and g are injective. Let x1, x2 ∈ X and assume that g ◦ f(x1) = g ◦ f(x2). This says
that g(f(x1)) = g(f(x2)). Since g is injective, this implies that f(x1) = f(x2). Since f is injective,
this implies that x1 = x2.

II.
(4)

Prove that if a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m.

Assume that a ≡ b mod m and b ≡ c mod m. Then, m|a − b and m|b − c, so m|(a − b) + (b − c).
Since this says that m|a− c, we have a ≡ c mod m.

III.
(4)

Give Euclid’s proof that there are infinitely many primes.

Suppose for contradiction that there are only finitely many primes, say p1, p2, . . . , pk. Put N =
p1p2 · · · pk + 1. Notice that no pi divides N .

If N is prime, then it is a prime different from any of the pi, a contradiction. If N is composite, the
Fundamental Theorem of Arithmetic ensures that we can write it as N = q1q2 · · · qm. But then, q1 is
a prime which divides N , so q1 is a prime which is not equal to any of the pi, again contradicting the
fact that p1, p2, . . . , pk are the only primes.

[Of course, as seen in class there are several other reasonable ways to write this proof.]

IV.
(4)

State the Fundamental Theorem of Arithmetic.

Any integer greater than 1 can be written as a product of prime factors. If the factors are written in
nondecreasing order, then this factorization is unique.

V.
(4)

(a) Show that ac ≡ bc mod m and c 6≡ 0 mod m does not always imply that a ≡ b mod m.

1 · 2 ≡ 3 · 2 mod 4 and 2 6≡ 0 mod 4, but 1 6≡ 3 mod 4.

(b) Tell without proof a condition (which always holds when m is prime and c 6≡ 0 mod m) that ensures
that ac ≡ bc mod m does imply that a ≡ b mod m.

gcd(c,m) = 1.

VI.
(5)

Prove that 1 · 1! + 2 · 2! + · · ·+ n · n! = (n + 1)!− 1 whenever n is a positive integer.

For n = 1, we have 1 · 1! = 1 · 1 = 1 and (1 + 1)! − 1 = 2 − 1 = 1, so the assertion is true for n = 1.
Inductively, assume that 1·1!+2·2!+· · ·+k·k! = (k+1)!−1. Then, 1·1!+2·2!+· · ·+k·k!+(k+1)·(k+1)! =
(k + 1)!− 1 + (k + 1) · (k + 1)! = (1 + (k + 1)) · (k + 1)!− 1 = (k + 2) · (k + 1)!− 1 = (k + 2)!− 1.
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VII.
(5)

Let X be the set of all infinite sequences in which each term is one of the letters a, b, or c. Some elements
of X are bbbbbbbbbbb · · · , aabbccaabbccaabbcc · · · , and abbabccbbaccbcbacbacbabcabaacbbbbaccbc · · · .
Using Cantor’s idea, prove that there does not exist any surjective function from N to X.

Suppose for contradiction that there exists a surjective function f : N → X. List the elements f(1),
f(2), . . . as

f(1) = x11x12x13 · · ·
f(2) = x21x22x23 · · ·
f(3) = x31x32x33 · · ·

...

Define a sequence x = x1x2x3 · · · in X by xi = a if xii = b or xii = c, and xi = b if xii = a. For all n,
xn 6= xnn so x 6= f(n). Therefore x is an element of X which is not in the range of f , contradicting
the fact that f is surjective.

VIII.
(4)

Let Y be the set of all positive fractions (not rational numbers, so 1
2 and 2

4 are different fractions). Using
Cantor’s idea, prove that Y is countable.

Arrange the fractions m/n with m,n ∈ N is an infinite array:

1/1 1/2 1/3 1/4 · · ·
2/1 2/2 2/3 2/4 · · ·
3/1 3/2 3/3 3/4 · · ·
4/1 4/2 4/3 4/4 · · ·

...

The Cantor method of going up and down the diagonals allows us to turn this into a single list:
1/1, 1/2, 2/1, 3/1, 2/2, 1/3, 1/4, 2/3, 3/2, 4/1, . . . . Then, we define a bijection from N to the set of
positive fractions by sending n to the nth fraction in this list.

IX.
(4)

Let B be a nonempty set, so that we can choose an element b0 of B. Prove that there exists a surjective
function from P(B) to B.

Define f : P(B) → B by the rule that f(S) = b if S is of the form {b}, and f(S) = b0 if S does not
have cardinality 1. This is surjective, since if b is any element of B, then f({b}) = b, so b is in the
range of f .

X.
(4)

Let a, b, and c be integers. Using the definition of “divides”, prove that if a|b and b|c, then a|c.

Assume that a|b and b|c. Then there exists some n such that b = na, and there exists some m so that
c = mb. Therefore c = mb = (mn)a, so a|c.
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XI.
(5)

Let Z be an infinite set.
(a) Informally, saying that Z is countable means that it is possible to list the elements of Z. This is not a
real definition, since the word “list” is not precise. Give the formal definition of “Z is countable.”

Z is countable when there exists a bijective function from N to Z.

(b) Now suppose that Z is set of all infinite sequences in which each term is one of the letters a, or
b, and exactly one of the terms is b. Some elements of Y are baaaaaaa · · · , aaaaaaaaabaaaaaa · · · , and
aaaaaaa · · · aaaabaaaa · · · , where in the last sequence the b appears after exactly 35, 014, 227 a’s have
appeared. Prove that Z is countable.

Define f : N → Z by f(n) = aaaaaaa · · · aaaabaaaa · · · , where the b is in the nth place. This is
injective, since if f(m) = f(n) then the b appears in the mth position and the nth position, and as
there is only one b we must have m = n. Also, it is surjective, since if aaaaaaa · · · aaaabaaaa · · · is
any sequence in Z, then putting n equal to the place in which the b occurs, this sequence is f(n).

XII.
(4)

Let m and n be two positive integers. Show that if mn = 360 and the least common multiple of m and n
is 10 times their greatest common divisor, then both m and n are divisible by 6.

In general, mn = lcm(m,n) gcd(m,n), and in this case we have lcm(m,n) = 10 gcd(m,n), so mn =
10 gcd(m,n)2. Since mn = 360, this says that gcd(m, n)2 = 36, so gcd(m,n) = 6. Therefore 6 divides
both m and n. [Possibilities for {m,n} are {6, 60} and {12, 30}.]


