${\bf Mathematics}$	2513-001	
Examination	III Form	В

Name (please print)

April 27, 2006

Instructions: Give brief, clear answers. "Prove" means "give an argument".

I. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective.

(4)

II. State the Fundamental Theorem of Arithmetic.

(4)

III. Prove that if $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$.

(4)

IV. Give Euclid's proof that there are infinitely many primes.

(4)

V. Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1$ whenever n is a positive integer.

(5)

- **VI**. (a) Show that $ac \equiv bc \mod m$ and $c \not\equiv 0 \mod m$ does not always imply that $a \equiv b \mod m$.
- (4) (b) Tell without proof a condition (which always holds when m is prime and $c \not\equiv 0 \mod m$) that ensures that $ac \equiv bc \mod m$ does imply that $a \equiv b \mod m$.
- VII. Let X be the set of all infinite sequences in which each term is one of the letters x, y, or z. Some elements
- (5) of X are yyyyyyyyyy..., xxyyzzxxyyzzxxyyzz..., and xyyxyzzyyxzyxzyxzyxyxxyxyxxyyyxzzyz.... Using Cantor's idea, prove that there does not exist any surjective function from $\mathbb N$ to X.
- **VIII.** Let a, b, and c be integers. Using the definition of "divides", prove that if a|b and b|c, then a|c.

(4)

- IX. Let Y be the set of all positive fractions (not rational numbers, so $\frac{1}{2}$ and $\frac{2}{4}$ are different fractions). Using
- (4) Cantor's idea, prove that Y is countable.
- **X**. Let A be a nonempty set, so that we can choose an element a_0 of A. Prove that there exists a surjective
- (4) function from $\mathcal{P}(A)$ to A.
- **XI**. Let m and n be two positive integers. Show that if mn = 360 and the least common multiple of m and n
- (4) is 10 times their greatest common divisor, then both m and n are divisible by 6.
- **XII.** Let Z be an infinite set.
- (5) (a) Informally, saying that Z is countable means that it is possible to list the elements of Z. This is not a real definition, since the word "list" is not precise. Give the formal definition of "Z is countable."