Mathematics 2513-001
Name (please print)
Examination III Form B
April 27, 2006
Instructions: Give brief, clear answers. "Prove" means "give an argument".
I. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective.
(4)
II. State the Fundamental Theorem of Arithmetic.
(4)
III. Prove that if $a \equiv b \bmod m$ and $b \equiv c \bmod m$, then $a \equiv c \bmod m$.
(4)
IV. Give Euclid's proof that there are infinitely many primes.
(4)
V. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)$! -1 whenever n is a positive integer.
VI. (a) Show that $a c \equiv b c \bmod m$ and $c \not \equiv 0 \bmod m$ does not always imply that $a \equiv b \bmod m$.
(4) (b) Tell without proof a condition (which always holds when m is prime and $c \not \equiv 0 \bmod m$) that ensures that $a c \equiv b c \bmod m$ does imply that $a \equiv b \bmod m$.
VII. Let X be the set of all infinite sequences in which each term is one of the letters x, y, or z . Some elements (5) of X are yyyyyyyyyyy \cdots, xxyyzzxxyyzzxxyyzz \cdots, and xyyxyzzyyxzzyzyxzyxzyxyzxyxxzyyyyxzzyz \cdots. Using Cantor's idea, prove that there does not exist any surjective function from \mathbb{N} to X.
VIII. Let a, b, and c be integers. Using the definition of "divides", prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
IX. Let Y be the set of all positive fractions (not rational numbers, so $\frac{1}{2}$ and $\frac{2}{4}$ are different fractions). Using
(4) Cantor's idea, prove that Y is countable.
X. Let A be a nonempty set, so that we can choose an element a_{0} of A. Prove that there exists a surjective
(4) function from $\mathcal{P}(A)$ to A.
XI. Let m and n be two positive integers. Show that if $m n=360$ and the least common multiple of m and n
(4) is 10 times their greatest common divisor, then both m and n are divisible by 6 .
XII. Let Z be an infinite set.
(5) (a) Informally, saying that Z is countable means that it is possible to list the elements of Z. This is not a real definition, since the word "list" is not precise. Give the formal definition of " Z is countable."
(b) Now suppose that Z is set of all infinite sequences in which each term is one of the letters a, or b, and exactly one of the terms is a. Some elements of Y are abbbbbbb \cdots, bbbbbbbbbabbbbbb \cdots, and bbbbbbb \cdots bbbbabbbb \cdots, where in the last sequence the a appears after exactly $35,014,227$ b's have appeared. Prove that Z is countable.

