Instructions: Give brief, clear answers. "Prove" means "give an argument".
I. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective.

Assume that f and g are injective. Let $x_{1}, x_{2} \in X$ and assume that $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$. This says that $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. Since g is injective, this implies that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since f is injective, this implies that $x_{1}=x_{2}$.
II. State the Fundamental Theorem of Arithmetic.

Any integer greater than 1 can be written as a product of prime factors. If the factors are written in nondecreasing order, then this factorization is unique.
III. Prove that if $a \equiv b \bmod m$ and $b \equiv c \bmod m$, then $a \equiv c \bmod m$.

Assume that $a \equiv b \bmod m$ and $b \equiv c \bmod m$. Then, $m \mid a-b$ and $m \mid b-c$, so $m \mid(a-b)+(b-c)$. Since this says that $m \mid a-c$, we have $a \equiv c \bmod m$.
IV. Give Euclid's proof that there are infinitely many primes.

Suppose for contradiction that there are only finitely many primes, say $p_{1}, p_{2}, \ldots, p_{k}$. Put $N=$ $p_{1} p_{2} \cdots p_{k}+1$. Notice that no p_{i} divides N.
If N is prime, then it is a prime different from any of the p_{i}, a contradiction. If N is composite, the Fundamental Theorem of Arithmetic ensures that we can write it as $N=q_{1} q_{2} \cdots q_{m}$. But then, q_{1} is a prime which divides N, so q_{1} is a prime which is not equal to any of the p_{i}, again contradicting the fact that $p_{1}, p_{2}, \ldots, p_{k}$ are the only primes.
[Of course, as seen in class there are several other reasonable ways to write this proof.]
V. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ whenever n is a positive integer.
VI.

For $n=1$, we have $1 \cdot 1!=1 \cdot 1=1$ and $(1+1)!-1=2-1=1$, so the assertion is true for $n=1$. Inductively, assume that $1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!=(k+1)!-1$. Then, $1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!+(k+1) \cdot(k+1)!=$ $(k+1)!-1+(k+1) \cdot(k+1)!=(1+(k+1)) \cdot(k+1)!-1=(k+2) \cdot(k+1)!-1=(k+2)!-1$.
(a) Show that $a c \equiv b c \bmod m$ and $c \not \equiv 0 \bmod m$ does not always imply that $a \equiv b \bmod m$. $1 \cdot 2 \equiv 3 \cdot 2 \bmod 4$ and $2 \not \equiv 0 \bmod 4$, but $1 \not \equiv 3 \bmod 4$.
(b) Tell without proof a condition (which always holds when m is prime and $c \not \equiv 0$ mod m) that ensures that $a c \equiv b c \bmod m$ does imply that $a \equiv b \bmod m$.

$$
\operatorname{gcd}(c, m)=1
$$

VII. Let X be the set of all infinite sequences in which each term is one of the letters x, y, or z . Some elements (5) of X are yyyyyyyyyyy \cdots, xxyyzzxxyyzzxxyyzz \cdots, and xyyxyzzyyxzzyzyxzyxzyxyzxyxxzyyyyxzzyz \cdots. Using Cantor's idea, prove that there does not exist any surjective function from \mathbb{N} to X.

Suppose for contradiction that there exists a surjective function $f: \mathbb{N} \rightarrow X$. List the elements $f(1)$, $f(2), \ldots$ as

$$
\begin{aligned}
& f(1)=a_{11} a_{12} a_{13} \cdots \\
& f(2)=a_{21} a_{22} a_{23} \cdots \\
& f(3)=a_{31} a_{32} a_{33} \cdots
\end{aligned}
$$

Define a sequence $a=a_{1} a_{2} a_{3} \cdots$ in X by $a_{i}=x$ if $a_{i i}=y$ or $a_{i i}=z$, and $a_{i}=y$ if $a_{i i}=x$. For all n, $a_{n} \neq a_{n n}$ so $a \neq f(n)$. Therefore a is an element of X which is not in the range of f, contradicting the fact that f is surjective.
VIII. Let a, b, and c be integers. Using the definition of "divides", prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.

Assume that $a \mid b$ and $b \mid c$. Then there exists some n such that $b=n a$, and there exists some m so that $c=m b$. Therefore $c=m b=(m n) a$, so $a \mid c$.
IX. Let Y be the set of all positive fractions (not rational numbers, so $\frac{1}{2}$ and $\frac{2}{4}$ are different fractions). Using (4) Cantor's idea, prove that Y is countable.

Arrange the fractions m / n with $m, n \in \mathbb{N}$ is an infinite array:

$$
\begin{array}{lllll}
1 / 1 & 1 / 2 & 1 / 3 & 1 / 4 & \cdots \\
2 / 1 & 2 / 2 & 2 / 3 & 2 / 4 & \cdots \\
3 / 1 & 3 / 2 & 3 / 3 & 3 / 4 & \cdots \\
4 / 1 & 4 / 2 & 4 / 3 & 4 / 4 & \cdots
\end{array}
$$

The Cantor method of going up and down the diagonals allows us to turn this into a single list: $1 / 1,1 / 2,2 / 1,3 / 1,2 / 2,1 / 3,1 / 4,2 / 3,3 / 2,4 / 1, \ldots$ Then, we define a bijection from \mathbb{N} to the set of positive fractions by sending n to the $n^{t h}$ fraction in this list.
X. Let A be a nonempty set, so that we can choose an element a_{0} of A. Prove that there exists a surjective (4) function from $\mathcal{P}(A)$ to A.

Define $f: \mathcal{P}(A) \rightarrow A$ by the rule that $f(S)=a$ if S is of the form $\{a\}$, and $f(S)=a_{0}$ if S does not have cardinality 1 . This is surjective, since if a is any element of X, then $f(\{a\})=x$, so a is in the range of f.
XI. Let m and n be two positive integers. Show that if $m n=360$ and the least common multiple of m and n is 10 times their greatest common divisor, then both m and n are divisible by 6 .

In general, $m n=\operatorname{lcm}(m, n) \operatorname{gcd}(m, n)$, and in this case we have $\operatorname{lcm}(m, n)=10 \operatorname{gcd}(m, n)$, so $m n=$ $10 \operatorname{gcd}(m, n)^{2}$. Since $m n=360$, this says that $\operatorname{gcd}(m, n)^{2}=36$, so $\operatorname{gcd}(m, n)=6$. Therefore 6 divides both m and n. [Possibilities for $\{m, n\}$ are $\{6,60\}$ and $\{12,30\}$.]
XII. Let Z be an infinite set.
(5) (a) Informally, saying that Z is countable means that it is possible to list the elements of Z. This is not a real definition, since the word "list" is not precise. Give the formal definition of " Z is countable."
Z is countable when there exists a bijective function from \mathbb{N} to Z.
(b) Now suppose that Z is set of all infinite sequences in which each term is one of the letters a, or b, and exactly one of the terms is a. Some elements of Y are abbbbbbb \cdots, bbbbbbbbbabbbbbb \cdots, and bbbbbbb \cdots bbbbabbbb \cdots, where in the last sequence the a appears after exactly $35,014,227$ b's have appeared. Prove that Z is countable.

Define $f: \mathbb{N} \rightarrow Z$ by $f(n)=\operatorname{bbbbbbb} \cdots$ bbbbabbbb \cdots, where the b is in the $n^{t h}$ place. This is injective, since if $f(m)=f(n)$ then the a appears in the $m^{t h}$ position and the $n^{t h}$ position, and as there is only one a we must have $m=n$. Also, it is surjective, since if bbbbbbb \cdots bbbbabbbb \cdots is any sequence in Z, then putting n equal to the place in which the a occurs, this sequence is $f(n)$.

