Math 2423 homework

1. (due 2/1) Give a simple formula for $\sum_{k=0}^{n}(-1)^{k} x^{k}$ (the answer involves the expression $\left.(-1)^{n}\right)$.
2. (2/1) Suppose you take a square of side s and inscribe n^{2} congruent circles, as shown in this figure for $n=4$:

Try to decide, intuitively, whether the total area inside the circles converges to the area inside the square, as $n \rightarrow \infty$. Calculate the area inside the circles, as a function of n, and take the limit to see whether your intuition was correct.
3. $(2 / 1)$ Know the following from memory: the Intermediate Value Theorem, the Extreme Value Theorem, the Mean Value Theorem.
4. (2/1) Review the Chain Rule, and work enough problems to be sure that you can use it perfectly.
5. $(2 / 1)$ Let f be a function which is differentiable everywhere. For the error term $E(h)$ in $f(a+h)=f(a)+f^{\prime}(a) h+E(h)$, use the Mean Value Theorem to obtain the estimate that for some c between a and $a+h,|E(h)| \leq\left|f^{\prime \prime}(c)\right| h^{2}$.
6. (2/1) Use the previous problem to show that $|\sin (x)-x| \leq x^{2}$ for all x.
7. $(2 / 1)$ Use the telescoping sum $\sum_{k=1}^{n} k^{4}-(k-1)^{4}$ and the formulas that we established for $\sum_{k=1}^{n} k$ and $\sum_{k=1}^{n} k^{2}$ to obtain the formula $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
8. (2/1) 5.1 \# 20-22

