Math 2423 homework

- 1. (due 2/1) Give a simple formula for $\sum_{k=0}^{n} (-1)^{k} x^{k}$ (the answer involves the expression $(-1)^{n}$).
- 2. (2/1) Suppose you take a square of side s and inscribe n^2 congruent circles, as shown in this figure for n = 4:

Try to decide, intuitively, whether the total area inside the circles converges to the area inside the square, as $n \to \infty$. Calculate the area inside the circles, as a function of n, and take the limit to see whether your intuition was correct.

- 3. (2/1) Know the following from memory: the Intermediate Value Theorem, the Extreme Value Theorem, the Mean Value Theorem.
- 4. (2/1) Review the Chain Rule, and work enough problems to be sure that you can use it perfectly.
- 5. (2/1) Let f be a function which is differentiable everywhere. For the error term E(h) in f(a+h) = f(a) + f'(a)h + E(h), use the Mean Value Theorem to obtain the estimate that for some c between a and a + h, $|E(h)| \leq |f''(c)|h^2$.
- 6. (2/1) Use the previous problem to show that $|\sin(x) x| \le x^2$ for all x.
- 7. (2/1) Use the telescoping sum $\sum_{k=1}^{n} k^4 (k-1)^4$ and the formulas that we established for $\sum_{k=1}^{n} k$ and $\sum_{k=1}^{n} k^2$ to obtain the formula $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.
- 8. (2/1) 5.1 # 20-22