Math 2423 homework

38. (4/24) Suppose that $f(x)$ is a function whose third derivative $f^{(3)}(x)$ exists and is continuous. Define $E_{2}(h)$ by the formula $f(a+h)=f(a)+f^{\prime}(a) h+\frac{1}{2!} f^{\prime \prime}(a) h^{2}+E_{2}(h)$.
39. Use integration by parts to calculate that $E_{2}(h)=\int_{0}^{h} \frac{1}{2!}(h-t)^{2} f^{(3)}(a+t) d t$.
40. Let m be the minimum and M the maximum of $f^{(3)}$ on the interval $[a, a+h]$. Show that $\frac{1}{3!} h^{3} m \leq E_{2}(h) \leq \frac{1}{3!} h^{3} M$.
41. Use the Intermediate Value Theorem to show that there exists c in $[a, a+h]$ so that $E_{2}(h)=\frac{1}{3!} f^{(3)}(c) h^{3}$.
42. $(4 / 24) 8.3$ as many as needed from \# 1-32, including at least 4-6, 21-24, 30-32
43. (4/24) 8.4 as many as needed from \# 1-50, including at least $1,5,6,23,24,29,34$, $38,43,44,45,49$
44. $(4 / 24) 8.6 \# 17,19,22,30,31$
45. $8.7 \# 21$ (c) (S_{n} only), 22, 46 (use the error formula)
46. $8.8 \# 1,2$, as many as needed from 5-40 and 49-54
47. 8.8 \# 71
48. $9.1 \# 5,7,10-13$
49. $9.2 \# 5,8,9,15,16,25$
