I. Consider the portion of the graph $y=e^{-x}$ between $x=0$ and $x=1$. For each of the following, write an (8) integral whose value is the specified quantity for this portion of the graph, but do not attempt to evaluate the integrals.

1. The length of this portion of the graph.
2. The surface area obtained when it is rotated about the x-axis.
3. The surface area obtained when it is rotated about the line $y=-1$.
4. The surface area obtained when it is rotated about the y-axis.
II. Simpson's Rule states that $\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+4 y_{n-1}+y_{n}\right)$, with error of magnitude
(6) at most $\frac{K(b-a)}{180} h^{4}$, where $\left|f^{(4)}(x)\right| \leq K$ for $a \leq x \leq b$. Use Simpson's rule with $n=4$ to approximate $\int_{-1}^{1} x^{4} d x$, and give a bound for the error. Leave both answers as fractions, not decimals.
III. Let C be the portion of the unit circle that lies in the first quadrant.
(i) Write the standard equation for C of the form $y=f(x), 0 \leq x \leq 1$, and calculate that $d s=\frac{1}{\sqrt{1-x^{2}}} d x$.
(ii) Integrate this to find the length of C. If the integral is improper, show the details of how you handle it.
IV. Verify that $y=a \sinh (x)+b \cosh (x)$ is a solution to the differential equation $y^{\prime \prime}=y$.
V. State the Fundamental Theorem of Calculus (both parts, of course).
(6)
VI. Calculate a Riemann sum for the function $f(x)=x^{2}$ on the interval $[0,6]$, using the partition with $x_{1}=1$, (4) $\quad x_{2}=2$, and $x_{3}=4$, and using midpoints as the sample points.
VII. For each of the following rational functions, write out the precise form of the partial fraction decomposition.
(8) Do not solve for unknown values of the coefficients.
5. $\frac{x^{5}-x^{2}}{\left(x^{3}+x\right)^{3}}$
6. $\frac{1}{\left(x^{2}+x+1\right)\left(x^{2}+x-1\right)}$
VIII. Use l'Hôpital's rule to evaluate the following limits.
(6)
7. $\lim _{x \rightarrow 0^{+}} \sin (x) \ln (x)$
8. $\lim _{x \rightarrow 0} x^{x}$
IX. Evaluate the following integrals:
(20)
9. $\int \frac{\log _{10}(x)}{x} d x$
10. $\int \frac{\cosh (x)}{\cosh ^{2}(x)-1} d x$
11. $\int_{1}^{\ln (5)} x^{2} e^{x} d x$
12. $\int \frac{1}{x^{2}+x+1} d x$
13. $\int x \cos ^{2}(x) d x$
X. Find the domain and range of the function $f(x)=\ln \left(\tan ^{-1}(x)\right)$.
(4)
XI. Consider the function $y=e^{-x}$.
(8)
14. Calculate $d s$.
15. Write an improper integral whose value is the surface area produced when the graph of the function $y=e^{-x}$, $0 \leq x<\infty$, is rotated about the x-axis.
16. Evaluate the integral, using the substitution $u=e^{-x}$ and the integration formula $\int \sqrt{a^{2}+u^{2}} d u=$ $\frac{u}{2} \sqrt{a^{2}+u^{2}}+\frac{a^{2}}{2} \ln \left(u+\sqrt{a^{2}+u^{2}}\right)+C$.
