just do what you can in 75 minutes.
I. Let R be the region bounded by $y=e^{-x^{2}}, x=0$, and $x=2$.

1. Calculate the volume produced when this region is rotated about the y-axis.
2. Write an integral whose value is the volume produced when R is rotated about the line $y=2$, but do not evaluate it.
II. Calculate the following derivatives:
(6)
3. $\frac{d}{d x}\left(5^{-1 / x}\right)$
4. $\frac{d}{d x}\left(\log _{3}\left(x^{2}-4\right)\right)$
III. Use the definition of $\ln (x)$ and the fact that integration is additive on unions of domains to verify that (5) $\quad \ln (a b)=\ln (a)+\ln (b)$.
IV. The following problem concerns the function $\sin ^{-1}(x)$, which is the inverse function of the function $f(x)$ (5) with domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ given by $f(x)=\sin (x)$.
5. Draw a right triangle containing an angle of $\sin ^{-1}(x)$, and use it to find $\cos \left(\sin ^{-1}(x)\right)$.
6. Differentiate the equation $\sin \left(\sin ^{-1}(x)\right)=x$ and simplify to find the derivative of $\sin ^{-1}(x)$.
V. Give a precise definition of what it means to say that a function f is injective (also called one-to-one).
(3)
VI. Calculate the area of the region bounded by $y=\sin ^{-1}(x), x=1$, and $y=0$.
(4)
VII. Find the domain of the function $\ln \left(e^{x}-2\right)$.
(3)
VIII. Evalulate the following integrals.
(12)
7. $\int \frac{e^{x}+1}{e^{x}} d x$
8. $\int \frac{e^{x}}{e^{x}+1} d x$
9. $\int \frac{t^{2}}{5+t^{6}} d t$
10. $\int \frac{\sin ^{-1}(x)}{\sqrt{1-x^{2}}} d x$
IX. Solve for x in the equation $2^{a x}=\ln (c) 3^{b x}$.
X. A painting in an art gallery has height h and
(6) is hung so that its lower edge is a distance d above the eye of an observer. How far from the wall should the observer stand so as to get the best view (that is, so that the angle θ is largest)?

