Mathematics 2423-001H

Examination II

March 29, 2007

Instructions: Give brief, clear answers. It is not expected that most people will be able to answer all the questions, just do what you can in 75 minutes.

- I. Let R be the region bounded by $y = e^{-x^2}$, x = 0, and x = 2. (7)
 - 1. Calculate the volume produced when this region is rotated about the *y*-axis.
 - 2. Write an integral whose value is the volume produced when R is rotated about the line y = 2, but do *not* evaluate it.
- **II**. Calculate the following derivatives:
- (6)

1.
$$\frac{d}{dx}(5^{-1/x})$$

2. $\frac{d}{dx}(\log_3(x^2 - 4))$

III. Use the definition of $\ln(x)$ and the fact that integration is additive on unions of domains to verify that (5) $\ln(ab) = \ln(a) + \ln(b)$.

- **IV**. The following problem concerns the function $\sin^{-1}(x)$, which is the inverse function of the function f(x)(5) with domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ given by $f(x) = \sin(x)$.
 - 1. Draw a right triangle containing an angle of $\sin^{-1}(x)$, and use it to find $\cos(\sin^{-1}(x))$.
 - 2. Differentiate the equation $\sin(\sin^{-1}(x)) = x$ and simplify to find the derivative of $\sin^{-1}(x)$.

V. Give a precise definition of what it means to say that a function f is *injective* (also called *one-to-one*). (3)

- **VI**. Calculate the area of the region bounded by $y = \sin^{-1}(x)$, x = 1, and y = 0.
- (4)
- **VII.** Find the domain of the function $\ln(e^x 2)$.

(3)

VIII. Evalulate the following integrals.

(12)
1.
$$\int \frac{e^x + 1}{e^x} dx$$
2.
$$\int \frac{e^x}{e^x + 1} dx$$
3.
$$\int \frac{t^2}{5 + t^6} dt$$

$$\int \sin^{-1}(x)$$

 $4. \quad \int \frac{\sin^{-1}(x)}{\sqrt{1-x^2}} \, dx$

IX. Solve for x in the equation $2^{ax} = \ln(c) 3^{bx}$. (4) **X**. A painting in an art gallery has height h and (6) is hung so that its lower edge is a distance dabove the eye of an observer. How far from the wall should the observer stand so as to get the best view (that is, so that the angle θ is largest)?

