I. Evaluate the following integrals:
(20)

1. $\int \sin ^{3}(3 x) \cos ^{2}(3 x) d x$
2. $\int \sin ^{2}(x) \cos ^{2}(x) d x$
3. $\int \sin ^{-1}(x) d x$.
4. $\int \frac{x^{3}}{x^{2}+1} d x$.
5. $\int \sinh (\sqrt{x}) d x$.
II. Calculate the following derivatives:
(6)
6. $\frac{d}{d x}\left(5^{-1 / x}\right)$
7. $\frac{d}{d x}\left(\log _{3}\left(x^{2}-4\right)\right)$
III. Use the method of partial fractions to evaluate $\int \frac{1}{x^{4}+x^{2}} d x$.
IV. Use the substitution $x=\tan (\theta)$ to evaluate $\int \frac{1}{x^{4}+x^{2}} d x$. Make it clear how you are obtaining the answer
(6) (6) in terms of x.
V. On a single coordinate system, sketch the graphs of $y=\sinh (x), y=\cosh (x)$, and $y=e^{x} / 2$. Make the (4) relation between them clear.
VI. Evaluate the following limits. Show your reasoning.
(6) 1. $\lim _{x \rightarrow \infty} x^{\ln (2) /(1+\ln (x))}$
8. $\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}$
VII. Suppose that $f(x)$ is a function whose second derivative $f^{\prime \prime}(x)$ exists and is continuous. Define $E(h)$ by
(8) the formula $f(a+h)=f(a)+f^{\prime}(a) h+E(h)$. That is, $E(h)$ is the error of linear approximation.
9. Use integration by parts to calculate that $E(h)=\int_{0}^{h}(h-t) f^{\prime \prime}(a+t) d t$.
10. Let m be the minimum and M the maximum of $f^{\prime \prime}$ on the interval $[a, a+h]$, so that

$$
m \leq f^{\prime \prime}(a+t) \leq M
$$

for $0 \leq t \leq h$. Notice that

$$
(h-t) m \leq(h-t) f^{\prime \prime}(a+t) \leq(h-t) M
$$

for $0 \leq t \leq h$. Now, show that $\frac{1}{2} h^{2} m \leq E(h) \leq \frac{1}{2} h^{2} M$.
3. Use the Intermediate Value Theorem to show that there exists c in $[a, a+h]$ so that $E(h)=\frac{1}{2} f^{\prime \prime}(c) h$.

