February 14, 2008
Instructions: Give brief, clear answers.
I. Calculate each of the following.
(9)
(a) The directional derivative of $\ln \left(x^{2}+y^{2}\right)$ at the point $(2,1)$ in the direction toward $(-1,2)$.
(b) The maximum rate of change of $q e^{-p}-p e^{-q}$ at $(p, q)=(0,0)$, and the direction in which it occurs.
(c) An equation for the tangent plane to the level surface of $\sqrt{x^{2}+y^{2}+z^{2}}$ at the point $(1,2,-2)$.
II. Let $f(x, y)=x y-x+2 y$, and let D be the closed triangular region with vertices $(4,0),(0,4)$, and $(0,0)$.
(6) Find the maximum and minimum values of f on the domain D, and where they occur.
III. Calculate the differential of the function $\sqrt{x^{2}+y^{2}}$. Use it to calculate the linear part of the change of
(5) $\sqrt{x^{2}+y^{2}}$ going from $(x, y)=(1,1)$ to $(x, y)=(3,2)$.
IV. In an $x y$-coordinate system, make a reasonable sketch of the gradient of (5) the function whose graph is shown at the right.

V. Partition the domain $D=[0,10] \times[0,4]$ into six rectangles, using the partition $\{0,2,6,10\}$ in the x-direction
(4) and $\{0,2,4\}$ in the y-direction. Using the midpoints as sample points, calculate the Riemann sum of the function $x-2 y$ for this partition.
VI. Let $x=e^{u} \sin (t), y=e^{u} \cos (t)$, and $z=f(x, y)$.

1. Calculate $\frac{\partial x}{\partial t}$ and $\frac{\partial y}{\partial t}$.
2. Calculate $\frac{\partial z}{\partial t}$ and express it purely in terms of $x, y, \frac{\partial z}{\partial x}$, and $\frac{\partial z}{\partial y}$.
3. Calculate $\frac{\partial}{\partial t}\left(\frac{\partial z}{\partial x} x\right)$ and express it purely in terms of x and y and partial derivatives of z.
VII. Use implicit differentiation to calculate $\frac{\partial R}{\partial R_{2}}$ if
(4)

$$
\begin{equation*}
\frac{1}{\sin (R)}=\frac{1}{\sin \left(R_{1} R_{2}\right)}+\frac{1}{\sin \left(R_{1} R_{3}\right)} \tag{4}
\end{equation*}
$$

VIII. In the $x y$-coordinate system to the right, the level curves (6) $\quad f(x, y)=c$ of a function are shown for $c=-2,-3,-4,-5$, and -6 , along with two points A and B, and a unit vector at each of the points A and B.

1. Sketch reasonable possibilities for ∇f at the points A and B.
2. Make a reasonable guess of the rate of change of f at A in the direction of the vector shown there.
3. Make a reasonable guess of the rate of change of f at B in the direction of the vector shown there.

IX. A unit vector \vec{u} in 3 -dimensional space can be written as $a \vec{\imath}+b \vec{\jmath}+c \vec{k}$ where a, b, and c are numbers
(6) satisfying $a^{2}+b^{2}+c^{2}=1$. Let $f(x, y, z)$ be a function on $x y z$-space.
(i) Write parametric equations for the straight line through the point $\left(x_{0}, y_{0}, z_{0}\right)$ with direction vector $\vec{u}=$ $a \vec{\imath}+b \vec{\jmath}+c \vec{k}$. (That is, find functions $x(t), y(t)$, and $z(t)$ so that $x=x(t), y=y(t)$, and $z=z(t)$ are parametric equations for this line.)
(ii) Put your explicit functions $x(t), y(t)$, and $z(t)$ into the expression $f(x(t), y(t), z(t)))$ to find an expression for the values of f along the straight line. Use the Chain Rule to calculate $\frac{d}{d t}(f(x(t), y(t), z(t)))$.
(iii) Find the value of your expression for $\frac{d}{d t}(f(x(t), y(t), z(t)))$ when $t=0$ and verify that it equals $\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot \vec{u}$.
