February 14, 2008
Instructions: Give brief, clear answers.
I. Calculate each of the following.
(9)
(a) The directional derivative of $\ln \left(x^{2}+y^{2}\right)$ at the point $(2,1)$ in the direction toward $(-1,2)$.
$\nabla\left(\ln \left(x^{2}+y^{2}\right)\right)=\frac{2 x}{x^{2}+y^{2}} \vec{\imath}+\frac{2 y}{x^{2}+y^{2}} \vec{\jmath}$ so $\nabla\left(\ln \left(x^{2}+y^{2}\right)\right)(2,1)=\frac{4}{5} \vec{\imath}+\frac{2}{5} \vec{\jmath}$. The vector from $(2,1)$ to $(-1,2)$ is $-3 \vec{\imath}+\vec{\jmath}$, which has length $\sqrt{10}$, so a unit vector in that direction is $\vec{u}=\frac{-3}{\sqrt{10}} \vec{\imath}+\frac{1}{\sqrt{10}} \vec{\jmath}$. The desired rate of change is $\nabla\left(\ln \left(x^{2}+y^{2}\right)\right)(2,1) \cdot \vec{u}=\frac{-2}{\sqrt{10}}$.
(b) The maximum rate of change of $q e^{-p}-p e^{-q}$ at $(p, q)=(0,0)$, and the direction in which it occurs.
$\nabla\left(q e^{-p}-p e^{-q}\right)=\left(-q e^{-p}-e^{-q}\right) \vec{\imath}+\left(e^{-p}+p e^{-q}\right) \vec{\jmath}$, so $\nabla\left(q e^{-p}-p e^{-q}\right)(0,0)=-\vec{\imath}+\vec{\jmath}$. This is the direction of the maximum rate of change, and the rate in that direction is the length $\|-\vec{\imath}+\vec{\jmath}\|=\sqrt{2}$.
(c) An equation for the tangent plane to the level surface of $\sqrt{x^{2}+y^{2}+z^{2}}$ at the point $(1,2,-2)$.
$\nabla\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \vec{\imath}+\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \vec{\jmath}+\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \vec{k}$, so a normal vector to the level surface at the point $(1,2,-2)$ is $\nabla\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)(1,2,-2)=\frac{1}{3} \vec{\imath}+\frac{2}{3} \vec{\jmath}-\frac{2}{3} \vec{k}$. So an equation of the tangent plane is $\frac{1}{3}(x-1)+\frac{2}{3}(y-2)-\frac{2}{3}(z+2)=0$, or just $x+2 y-2 z=9$.
Alternatively, you could just notice that the surface is a sphere, and a radius of the sphere must normal to the sphere, so the position vector $\vec{\imath}+2 \vec{\jmath}-2 \vec{k}$ of $(1,2,-2)$ is normal.
II. Let $f(x, y)=x y-x+2 y$, and let $D$ be the closed triangular region with vertices $(4,0),(0,4)$, and $(0,0)$.
(6) Find the maximum and minimum values of $f$ on the domain $D$, and where they occur.
$\frac{\partial f}{\partial x}=y-1$ and $\frac{\partial f}{\partial y}=x+2$, so the only critical point is $(-2,1)$, which does not lie in $D$.
We now examine $f$ on the three sides:

1. The points on the side from $(0,0)$ to $(4,0)$ are $(x, 0)$ for $0 \leq x \leq 4$, and $f(x, 0)=-x$. So the maximum and minimum on this side occur at $(0,0)$ and $(4,0)$.
2. Similarly, $f(0, y)=2 y$, so the maximum and mimumum on the vertical side occur at $(0,0)$ and (0, 4).
3. Points on the diagonal side have the form $(x, 4-x)$ for $0 \leq x \leq 4$, and $f(x, 4-x)=-x^{2}-x+8$. This has a critical point when $x=1 / 2$, giving the point $(1 / 2,7 / 2)$ as another possibility for an extreme value of $f$.
Since $f(0,0)=0, f(4,0)=8, f(0,4)=-4$, and $f(1 / 2,7 / 2)=33 / 4$, the mimimum value of $f$ on $D$ is -4 at $(0,4)$, and the maximum is $33 / 4$ at $(1 / 2,7 / 2)$.
III. Calculate the differential of the function $\sqrt{x^{2}+y^{2}}$. Use it to calculate the linear part of the change of
(5) $\sqrt{x^{2}+y^{2}}$ going from $(x, y)=(1,1)$ to $(x, y)=(3,2)$.
$d \sqrt{x^{2}+y^{2}}=\frac{x}{\sqrt{x^{2}+y^{2}}} d x+\frac{y}{\sqrt{x^{2}+y^{2}}} d y$. For the linear part of the change of $\sqrt{x^{2}+y^{2}}$ going from $(x, y)=(1,1)$ to $(x, y)=(3,2)$, we take $(x, y)=(1,1), d x=2$, and $d y=1$ to obtain $\frac{3}{\sqrt{2}}$.
IV. In an $x y$-coordinate system, make a reasonable sketch of the gradient of (5) the function whose graph is shown at the right.


V. Partition the domain $D=[0,10] \times[0,4]$ into six rectangles, using the partition $\{0,2,6,10\}$ in the $x$-direction
(4) and $\{0,2,4\}$ in the $y$-direction. Using the midpoints as sample points, calculate the Riemann sum of the function $x-2 y$ for this partition.

The midpoints and the areas of the rectangles that contain them are: $(1,1)$ and $4,(4,1)$ and $8,(8,1)$ and $8,(1,3)$ and $4,(4,3)$ and 8 , and $(8,3)$ and 8 . So the Riemann sum is

$$
f(1,1) \times 4+f(4,1) \times 8+f(8,1) \times 8+f(1,3) \times 4+f(4,3) \times 8+f(8,3) \times 8=-4+16+48-20-16+16=40 .
$$

Page 3
VI. Let $x=e^{u} \sin (t), y=e^{u} \cos (t)$, and $z=f(x, y)$.
(7)

1. Calculate $\frac{\partial x}{\partial t}$ and $\frac{\partial y}{\partial t}$.

$$
\frac{\partial x}{\partial t}=e^{u} \cos (t)=y \text { and } \frac{\partial y}{\partial t}=-e^{u} \sin (t)=-x .
$$

2. Calculate $\frac{\partial z}{\partial t}$ and express it purely in terms of $x, y, \frac{\partial z}{\partial x}$, and $\frac{\partial z}{\partial y}$.

$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial x} \frac{\partial y}{\partial t}=\frac{\partial z}{\partial x} y-\frac{\partial z}{\partial y} x .
$$

3. Calculate $\frac{\partial}{\partial t}\left(\frac{\partial z}{\partial x} x\right)$ and express it purely in terms of $x$ and $y$ and partial derivatives of $z$.

Applying the Chain Rule, we have

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(\frac{\partial z}{\partial x} x\right)=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x} x\right) \frac{\partial x}{\partial t}+\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x} x\right) \frac{\partial y}{\partial t} \\
=\left(\frac{\partial^{2} z}{\partial x^{2}} x+\frac{\partial z}{\partial x}\right) y+\left(\frac{\partial^{2} z}{\partial x \partial y} x\right)(-x)=\frac{\partial^{2} z}{\partial x^{2}} x y-\frac{\partial^{2} z}{\partial x \partial y} x^{2}+\frac{\partial z}{\partial x} y .
\end{gathered}
$$

Alternatively, one could try to use the product rule and Clairaut's Theorem:

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(\frac{\partial z}{\partial x} x\right)=\frac{\partial^{2} z}{\partial t \partial x} x+\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}=x \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial t}\right)+\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}=x \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x} y-\frac{\partial z}{\partial y} x\right)+\frac{\partial z}{\partial x} y \\
=x\left(\frac{\partial^{2} z}{\partial x^{2}} y-\frac{\partial^{2} z}{\partial x \partial y} x-\frac{\partial z}{\partial y}\right)+\frac{\partial z}{\partial x} y=\frac{\partial^{2} z}{\partial x^{2}} x y-\frac{\partial^{2} z}{\partial x \partial y} x^{2}+\frac{\partial z}{\partial x} y-\frac{\partial z}{\partial y} x .
\end{gathered}
$$

Note that this gives a different answer, so one of the two calculations is incorrect. It turns out that the second is incorrect, for a subtle reason (I still gave this answer full credit). The reason is that Clairaut's Theorem is not being correctly: $x$ and $t$ are not independent variables, so it is not really the setup of Clairaut's Theorem. Here is a simple example from 1-variable calculus that shows that such a calculation does not work:

$$
\frac{d}{d t} \frac{d}{d\left(t^{2}\right)}\left(t^{2}\right)=\frac{d}{d t}(1)=0
$$

but (assuming that $t>0$ ):

$$
\frac{d}{d\left(t^{2}\right)} \frac{d}{d t}\left(t^{2}\right)=\frac{d}{d\left(t^{2}\right)}(2 t)=\frac{d}{d\left(t^{2}\right)}\left(2 \sqrt{t^{2}}\right)=2 \cdot \frac{1}{2 \sqrt{t^{2}}}=\frac{1}{t}
$$

There is simply no reason that these calculations need to give the same answer.
VII. Use implicit differentiation to calculate $\frac{\partial R}{\partial R_{2}}$ if

$$
\begin{gathered}
\frac{1}{\sin (R)}=\frac{1}{\sin \left(R_{1} R_{2}\right)}+\frac{1}{\sin \left(R_{1} R_{3}\right)} . \\
-\frac{1}{\sin ^{2}(R)} \cos (R) \frac{\partial R}{\partial R_{2}}=-\frac{1}{\sin ^{2}\left(R_{1} R_{2}\right)} \cos \left(R_{1} R_{2}\right) R_{1}+0 \\
\frac{\partial R}{\partial R_{2}}=\frac{\sin ^{2}(R) \cos \left(R_{1} R_{2}\right) R_{1}}{\cos (R) \sin ^{2}\left(R_{1} R_{2}\right)}=\frac{R_{1} \sin (R) \tan (R)}{\sin \left(R_{1} R_{2}\right) \tan \left(R_{1} R_{2}\right)}
\end{gathered}
$$

or

$$
\begin{gathered}
\csc (R)=\csc \left(R_{1} R_{2}\right)+\csc \left(R_{1} R_{3}\right) \\
-\csc (R) \cot (R) \frac{\partial R}{\partial R_{2}}=-\csc \left(R_{1} R_{2}\right) \cot \left(R_{1} R_{2}\right) R_{1}+0 \\
\frac{\partial R}{\partial R_{2}}=\sin \left(R_{1}\right) \tan \left(R_{1}\right) \csc \left(R_{1} R_{2}\right) \cot \left(R_{1} R_{2}\right) R_{1}=\frac{\sin ^{2}(R) \cos \left(R_{1} R_{2}\right) R_{1}}{\cos (R) \sin ^{2}\left(R_{1} R_{2}\right)}=\frac{R_{1} \sin (R) \tan (R)}{\sin \left(R_{1} R_{2}\right) \tan \left(R_{1} R_{2}\right)}
\end{gathered}
$$

VIII. In the $x y$-coordinate system to the right, the level curves (6) $\quad f(x, y)=c$ of a function are shown for $c=-2,-3,-4,-5$, and -6 , along with two points $A$ and $B$, and a unit vector at each of the points $A$ and $B$.

1. Sketch reasonable possibilities for $\nabla f$ at the points $A$ and $B$.
2. Make a reasonable guess of the rate of change of $f$ at $A$ in the direction of the vector shown there.
3. Make a reasonable guess of the rate of change of $f$ at $B$ in the direction of the vector shown there.


The gradient at $A$ is perpendicular to the level curve and points in the direction of larger values. It should have length around 1 , since the distance from the -6 level curve to the level -5 level curve is around 1 .

The gradient at $B$ should have length around 3, since the distance from the -6 level curve to the level -5 level curve is around $1 / 3$ (traveling at unit speed in that direction, one is crossing unit level curves at around three per unit time).


A reasonable guess for the rate of change at $A$ is 0 , since the vector appears to be tangent to the level curve. For $B$, the projection of the gradient to the direction of the other vector would have length around 2 , but point in the opposite direction. So the rate of change $\nabla f \cdot \vec{u}$ should be around -2 .

Page 5
Name (please print)
IX. A unit vector $\vec{u}$ in 3-dimensional space can be written as $a \vec{\imath}+b \vec{\jmath}+c \vec{k}$ where $a, b$, and $c$ are numbers (6) satisfying $a^{2}+b^{2}+c^{2}=1$. Let $f(x, y, z)$ be a function on $x y z$-space.
(i) Write parametric equations for the straight line through the point $\left(x_{0}, y_{0}, z_{0}\right)$ with direction vector $\vec{u}=$ $a \vec{\imath}+b \vec{\jmath}+c \vec{k}$. (That is, find functions $x(t), y(t)$, and $z(t)$ so that $x=x(t), y=y(t)$, and $z=z(t)$ are parametric equations for this line.)

Using the standard formula for the line through ( $x_{0}, y_{0}, z_{0}$ ) with direction vector $\vec{u}=a \vec{\imath}+b \vec{\jmath}+c \vec{k}$ gives $x=x_{0}+a t, y=y_{0}+b t$, and $z=z_{0}+c t$.
(ii) Put your explicit functions $x(t), y(t)$, and $z(t)$ into the expression $f(x(t), y(t), z(t)))$ to find an expression for the values of $f$ along the straight line. Use the Chain Rule to calculate $\frac{d}{d t}(f(x(t), y(t), z(t)))$.

$$
\begin{gathered}
\frac{d}{d t}\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right) \\
=\frac{\partial f}{\partial x}\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right) \frac{d\left(x_{0}+a t\right)}{d t} \\
+\frac{\partial f}{\partial y}\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right) \frac{d\left(y_{0}+b t\right)}{d t}+\frac{\partial f}{\partial z}\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right) \frac{d\left(z_{0}+c t\right)}{d t} \\
=\frac{\partial f}{\partial x}\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right) a+\frac{\partial f}{\partial y}\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right) b+\frac{\partial f}{\partial z}\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right) c .
\end{gathered}
$$

(iii) Find the value of your expression for $\frac{d}{d t}(f(x(t), y(t), z(t)))$ when $t=0$ and verify that it equals $\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot \vec{u}$.

$$
\begin{gathered}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) a+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}, z_{0}\right) b+\frac{\partial f}{\partial z}\left(x_{0}, y_{0}, z_{0}\right) c \\
=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) \vec{\imath}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}, z_{0}\right) \vec{\jmath}+\frac{\partial f}{\partial z}\left(x_{0}, y_{0}, z_{0}\right) \vec{k}\right) \cdot(a \vec{\imath}+b \vec{\jmath}+c \vec{k})=\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot \vec{u} .
\end{gathered}
$$

