Instructions: Give brief, clear answers.
I. Let $a$ be a positive number and let $T$ be the triangle in the $x y$-plane bounded by $x=0, y=0$, and (6) $\quad x+y=a$. Find the centroid $(\bar{x}, \bar{y})$ of $T$ (i. e. the center of mass, assuming that $\rho=1$ ) of $T$. You may take it as obvious that the centroid lies on the line $y=x$, so it is only necessary to calculate one of $\bar{x}$ or $\bar{y}$.
II. Let $E$ be the region in the first octant bounded by the surfaces $x^{2}+y^{2}=1, z=1$, and $y+z=1$ (so $z=1$
(6) forms the top of the solid). Sketch the region, and supply limits of integration, in cylindrical coordinates, for the integral $\iiint_{E} f(x, y, z) d V$.
III.
$(6)$ Evalute $\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y$.
IV. Find the surface area of the part of the paraboloid $y=1-x^{2}-z^{2}$ that has $y \geq 0$.
$\mathbf{V}$. Find the $z$-coordinate $\bar{z}$ of the center of mass of the portion of the region $E$ in the first octant that lies (7) inside the sphere $x^{2}+y^{2}+z^{2}=4$, assuming that the density is proportional to the distance from the origin.
VI. Let $S$ be the sphere of radius $a$ with center at the origin.
(6)
(a) The differential of surface area on $S$ can be expressed in terms of $d \phi$ and $d \theta$. Using the picture shown to the right, explain why $d S$ appears to be $a^{2} \sin (\phi) d \phi d \theta$.
(b) Using the expression $d S=a^{2} \sin (\phi) d \phi d \theta$, use a double integral in the variables $\phi$ and $\theta$ to calculate that the area of $S$ is $4 \pi a^{2}$.

VII. Let $x=e^{u} \sin (t), y=e^{u} \cos (t)$, and $z=f(x, y)$.

1. Calculate $\frac{\partial x}{\partial t}$ and $\frac{\partial y}{\partial t}$.
2. Calculate $\frac{\partial z}{\partial t}$ and express it purely in terms of $x, y, \frac{\partial z}{\partial x}$, and $\frac{\partial z}{\partial y}$.
3. Calculate $\frac{\partial}{\partial t}\left(\frac{\partial z}{\partial x} x\right)$ and express it purely in terms of $x$ and $y$ and partial derivatives of $z$.
VIII. The figure to the right shows (5) a change-of-coordinate function $\psi$, of the form $\psi(u, v)=(x(u, v), y(u, v))$.
(a) In the $x y$-coordinate system, sketch a possibility for what the vectors $\vec{r}_{u}=\frac{\partial x}{\partial u} \vec{\imath}+\frac{\partial y}{\partial u} \vec{\jmath}$ and $\vec{r}_{v}=\frac{\partial x}{\partial v} \vec{\imath}+\frac{\partial y}{\partial v} \vec{\jmath}$ might look like.
(b) Calculate the length of their cross product, and use it to write the relation between $d x d y$ and $d u d v$.
IX. Consider the change-of-coordinate function $x=3 u, y=2 v$.
(a) Calculate the Jacobian of this change of coordinates.
(b) Find the curve in the $u v$-plane that corresponds to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.
(c) Use this change of coordinates to find the area inside the ellipse, by calculating an integral in the $u v$-plane.
