Examination III

April 24, 2008

Instructions: Give brief answers, but clearly indicate your reasoning.

$$x = \rho \cos(\theta) \sin(\phi), \ y = \rho \sin(\theta) \sin(\phi), \ z = \rho \cos(\phi), \ dV = \rho^2 \sin(\phi) d\rho d\phi d\theta \ , \ \vec{r}_{\phi} \times \vec{r}_{\theta} = a \sin(\phi) (x\vec{\imath} + y\vec{\jmath} + z\vec{k}),$$

$$\| \vec{r}_{\phi} \times \vec{r}_{\theta} \| = a^2 \sin(\phi)$$

$$dS = \sqrt{1 + g_x^2 + g_y^2} \ dD$$

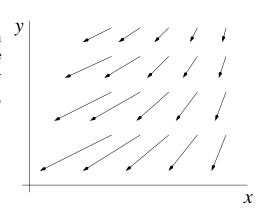
$$dS = \| \vec{r}_u \times \vec{r}_v \| \ dD$$

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_S \vec{F} \cdot \vec{n} \ dS$$

$$\iint_S (P \vec{\imath} + Q \vec{\jmath} + R \vec{k}) \cdot d\vec{S} = \iint_D -P g_x - Q g_y + R \ dD$$

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_D \vec{F} \cdot (\vec{r}_u \times \vec{r}_v) \ dD$$

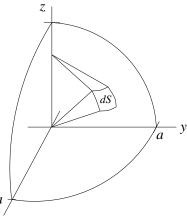
- I. For the following line integrals: write a definite integral, in terms of the specified parameter, whose value equals the value of the line integral, but do not evaluate the definite integral.
 - 1. $\int_C xy^2 ds$, where C is parameterized by $x = -t^2$, $y = t^3$ for $1 \le t \le 2$.
 - 2. $\int_C (xy^2\vec{\imath}) \cdot d\vec{r}$, where C is parameterized by $x = -t^2$, $y = t^3$ for $1 \le t \le 2$.
- II. Let r and θ be the usual polar coordinates on the plane. Calculate $\frac{\partial \theta}{\partial x}$ as follows:
 - (i) Use implicit differentiation starting from $r^2 = x^2 + y^2$ to calculate that $\frac{\partial r}{\partial x} = \frac{x}{r}$.
 - (ii) Starting from $x = r\cos(\theta)$, obtain an expression for $\frac{\partial \theta}{\partial x}$ in terms of x and y.
- III. Find a normal vector to the surface given by the parameterization $x = u^2$, $y = 2u\sin(v)$, $z = u\cos(v)$ at the point corresponding to $(u, v) = (2, \pi/4)$.
- IV. The figure to the right shows a vector field $\vec{F} = P\vec{i} + Q\vec{j}$. Based on (6) the probable behavior of the vector field, tell whether each of the following is zero, positive, negative, or cannot reasonably be determined from the information given: $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial y}$, $\text{div}(\vec{F})$, $\text{curl}(\vec{F}) \cdot \vec{k}$.



- V. State the Fundamental Theorem for Line Integrals, and use it to evaluate $\int_C (x^2 \vec{i} + y \vec{j}) \cdot d\vec{r}$, where C is a path from (1,0) to (2,2).
- VI. Calculate $\int_C xe^{-x} dx + (x^3 + 3xy^2) dy$, where C is the unit circle with the clockwise orientation. (5)

 $a^2 \sin(\phi) d\phi d\theta$.

- **VII.** Set up definite integrals whose values equal the values of the following surface integrals. Supply limits of integration, but *do not* carry out the evaluation of the definite integrals.
 - 1. $\iint_S y \, dS$ where S is the part of the paraboloid $y = x^2 + z^2$ that lies inside the cylinder $x^2 + z^2 = 4$. Express the definite integral in *polar coordinates* in the xz-plane, including specifying the limits of integration, but do not evaluate.
 - 2. $\iint_S (x\vec{i} + x\vec{j} + 2z\vec{k}) \cdot d\vec{S}$, where S is the portion of the sphere $x^2 + y^2 + z^2 = 4$ with $0 \le \phi \le 3\pi/4$, and with respect to the outward normal. Make use of the formulas given at the start of the exam; do not derive expressions for \vec{r}_{ϕ} and \vec{r}_{θ} .
- **VIII.** Let S be the sphere of radius a with center at the origin. The differ-(3) ential of surface area on S can be expressed in terms of $d\phi$ and $d\theta$. Using the picture shown to the right, explain why dS appears to be



- IX. Let $\vec{F}(x,y)$ be the vector field $\frac{-y}{x^2 + y^2}\vec{i} + \frac{x}{x^2 + y^2}\vec{j}$. Let C_R be the circle of radius R centered at the origin of the xy-plane.
 - (i) Evaluate $\int_{C_R} \vec{F} \cdot d\vec{r}$ by direct calculation using a parameterization of C_R .
 - (ii) Let C be any simple (no self crossings) loop that encloses the origin. Give C the positive orientation. Let R be a number so large that C is entirely contained inside C_R , and let D be the region lying between C_R and C, so that the oriented boundary of D is $C_R + (-C)$.
 - (a) Draw a sketch of a typical C and C_R , showing the region D.
 - (b) Use Green's Theorem, which applies to the region D as long as we used its oriented boundary $C_R + (-C)$, to calculate that $\int_{C_R + (-C)} \vec{F} \cdot d\vec{r} = 0$.
 - (c) What is the numerical value of $\int_C \vec{F} \cdot d\vec{r}$? Why?