
Mathematics 2443-003

Examination III

April 24, 2008

Name (please print)

Instructions: Give brief answers, but clearly indicate your reasoning.

x = ρ cos(θ) sin(φ), y = ρ sin(θ) sin(φ), z = ρ cos(φ), dV = ρ2 sin(φ) dρ dφ dθ , ~rφ × ~rθ = a sin(φ)(x~ı + y~ + z~k),
‖~rφ × ~rθ ‖ = a2 sin(φ)

dS =
√

1 + g2
x + g2

y dD

dS = ‖~ru × ~rv ‖ dD
∫∫

S
~F · d~S =

∫∫

S
~F · ~n dS

∫∫

S (P ~ı + Q~ + R~k) · d~S =
∫∫

D −P gx − Qgy + R dD
∫∫

S
~F · d~S =

∫∫

D
~F · (~ru × ~rv) dD

I.
(6)

For the following line integrals: write a definite integral, in terms of the specified parameter, whose value
equals the value of the line integral, but do not evaluate the definite integral.

1.

∫

C
xy2 ds, where C is parameterized by x = −t2, y = t3 for 1 ≤ t ≤ 2.

ds =
√

(−2t)2 + (3t2)2 dt =
√

4t2 + 9t4 dt, so
∫

C
xy2 ds =

∫ 2

1
(−t2)(t3)2

√

4t2 + 9t4 dt =

∫ 2

1
−t9

√

4 + 9t2 dt.

2.

∫

C
(xy2~ı ) · d~r, where C is parameterized by x = −t2, y = t3 for 1 ≤ t ≤ 2.

~r′(t) = −2t~ı + 3t2~, so

∫

C
(xy2~ı ) · d~r =

∫ 2

1
((−t2)(t3)2~ı ) · (−2t~ı + 3t2~ ) dt =

∫ 2

1
2t9 dt.

II.
(6)

Let r and θ be the usual polar coordinates on the plane. Calculate
∂θ

∂x
as follows:

(i) Use implicit differentiation starting from r2 = x2 + y2 to calculate that
∂r

∂x
=

x

r
.

r2 = x2 + y2

2r
∂r

∂x
= 2x

∂r

∂x
=

x

r

(ii) Starting from x = r cos(θ), obtain an expression for
∂θ

∂x
in terms of x and y.

x = r cos(θ)

1 =
∂r

∂x
cos(θ) − r sin(θ)

∂θ

∂x
=

x

r
cos(θ) − y

∂θ

∂x

y
∂θ

∂x
=

x

r
cos(θ) − 1 =

x

r2
r cos(θ) − 1 =

x2

r2
− r2

r2
=

x2 − r2

r2
=

−y2

r2

∂θ

∂x
=

−y

x2 + y2
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III.
(4)

Find a normal vector to the surface given by the parameterization x = u2, y = 2u sin(v), z = u cos(v) at
the point corresponding to (u, v) = (2, π/4).

~ru = 2u~ı + 2 sin(v)~ + cos(v)~k, ~rv = 2u cos(v)~ − u sin(v)~k, so
~ru(2, π/4) = 4~ı +

√
2~ + (1/

√
2)~k and ~rv(2, π/4) = 2

√
2~ −

√
2~k, and a normal vector is

~ru(2, π/4) × ~rv(2, π/4) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~ı ~ ~k

4
√

2 1/
√

2

0 2
√

2
√

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −4~ı + 4
√

2~ + 8
√

2~k .

y

x

IV.
(6)

The figure to the right shows a vector field ~F = P~ı+Q~. Based on
the probable behavior of the vector field, tell whether each of the
following is zero, positive, negative, or cannot reasonably be de-

termined from the information given:
∂P

∂x
,

∂Q

∂x
,

∂P

∂y
,

∂Q

∂y
, div(~F ),

curl(~F ) · ~k.

∂P

∂x
is positive,

∂Q

∂x
is zero,

∂P

∂y
is positive,

∂Q

∂y
is positive,

div(~F ) =
∂P

∂x
+

∂Q

∂y
is positive, curl(~F ) · ~k =

∂Q

∂x
− ∂P

∂y
is

negative. The last two can also be seen geometrically: the
flow is expanding so div(~F ) is positive, and the right-hand
rule shows that curl(~F ) points into the page, so its dot product
with ~k must be negative.

V.
(5)

State the Fundamental Theorem for Line Integrals, and use it to evaluate

∫

C
(x2~ı + y~ ) · d~r, where C is a

path from (1, 0) to (2, 2).

Let C be a path from p to q. Then for any function f ,

∫

C
∇f · d~r = f(q) − f(p). In the case of the

vector field x2~ı + y~, it is easy to calculate (or just by inspection see) that x2~ı + y~ = ∇(x3/3 + y2/2),

so

∫

C
(x2~ı + y~ ) · d~r = (23/3 + 22/2) − (13/3 − 0) = 13/3.

VI.
(5)

Calculate

∫

C
xe−x dx + (x3 + 3xy2) dy, where C is the unit circle with the clockwise orientation.

This vector field is defined at all points of the unit disk, so letting D be the unit disk we may apply

Green’s Theorem to find that

∫

C
(xe−x dx + (x3 + 3xy2) dy = −

∫∫

D

∂

∂x
(x3 + 3xy2)− ∂

∂y
(xe−x) dA =

−
∫∫

D

∂

∂x
(x3 + 3xy2) − ∂

∂y
(xe−x) dA = −

∫∫

D
3x2 + 3y2 dA = −

∫ 2π

0

∫ 1

0
3r3 dr dθ = −3π

2
. The

minus sign is because C is oriented clockwise, so sees the interior of the unit disk on its right.
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VII.
(12)

Set up definite integrals whose values equal the values of the following surface integrals. Supply limits of
integration, but do not carry out the evaluation of the definite integrals.

1.

∫∫

S
y dS where S is the part of the paraboloid y = x2 + z2 that lies inside the cylinder x2 + z2 = 4. Express

the definite integral in polar coordinates in the xz-plane, including specifying the limits of integration, but
do not evaluate.

Regarding y as a function of x and z, with domain the disk R of radius 2 in the xz-plane, we calculate

dS =

√

1 +

(

∂y

∂x

)2

+

(

∂y

∂z

)2

dR =
√

1 + 4x2 + 4z2 dR. Therefore we have

∫∫

S
y dS =

∫∫

R
(x2 + z2)

√

1 + 4x2 + 4z2 dR =

∫ 2π

0

∫ 2

0
r3

√

1 + 4r2 dr dθ.

2.

∫∫

S
(x~ı + x~ + 2z~k) · d~S, where S is the portion of the sphere x2 + y2 + z2 = 4 with 0 ≤ φ ≤ 3π/4, and

with respect to the outward normal. Make use of the formulas given at the start of the exam; do not derive
expressions for ~rφ and ~rθ.

We have

∫∫

S
(x~ı + x~ + 2z~k) · d~S =

∫∫

S
(x~ı + x~ + 2z~k) · (~rφ × ~rθ) dS

=

∫∫

S
(x~ı + x~ + 2z~k) · (2 sin(φ)(x~ı + y~ + z~k) dS =

∫∫

S
2 sin(φ)(2x + xy + 2z2) dS

=

∫ 2π

0

∫ 3π/4

0
8 sin3(φ) cos(θ) + 8 sin3(φ) cos(θ) sin(θ) + 16 sin(φ) cos2(φ) dφ dθ .

y

z

dS

x

a

a

VIII.
(3)

Let S be the sphere of radius a with center at the origin. The differ-
ential of surface area on S can be expressed in terms of dφ and dθ.
Using the picture shown to the right, explain why dS appears to be
a2 sin(φ) dφ dθ.

y

z

dS a dφ

θr d 

r = a sin(   )φ

a

x

a

a
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IX.
(8)

Let ~F (x, y) be the vector field
−y

x2 + y2
~ı +

x

x2 + y2
~. Let CR be the circle of radius R centered at the origin

of the xy-plane.

(i) Evaluate

∫

CR

~F · d~r by direct calculation using a parameterization of CR.

x = R cos(t), y = R sin(t), 0 ≤ t ≤ 2π, ~r′(t) = −R sin(t)~ı + R cos(t)~, so
∫

CR

( −y

x2 + y2
~ı+

x

x2 + y2
~

)

·d~r =

∫ 2π

0

(−R sin(t)

R2
~ı+

R cos(t)

R2
~

)

·(−R sin(t)~ı+R cos(t)~) dt =

∫ 2π

0
dt =

2π .

(ii) Let C be any simple (no self crossings) loop that encloses the origin. Give C the positive orientation. Let R
be a number so large that C is entirely contained inside CR, and let D be the region lying between CR and
C, so that the oriented boundary of D is CR + (−C).

(a) Draw a sketch of a typical C and CR, showing the region D.

C
R

D

x

y

C

(b) Use Green’s Theorem, which applies to the region D as long as we used its oriented boundary CR+(−C),

to calculate that

∫

CR+(−C)

~F · d~r = 0.

First we calculate that
∂Q

∂x
=

∂

∂x

(

x

x2 + y2

)

=
(x2 + y2) − x(2x)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
, and similarly

∂P

∂y
=

y2 − x2

(x2 + y2)2
, so Green’s Theorem gives

∫

CR+(−C)

~F · d~r =

∫∫

D
0 dA = 0.

(c) What is the numerical value of

∫

C

~F · d~r ? Why?

We have 0 =

∫

CR+(−C)

~F · d~r =

∫

CR

~F · d~r +

∫

−C

~F · d~r =

∫

CR

~F · d~r −
∫

C

~F · d~r, and therefore
∫

C

~F · d~r =

∫

CR

~F · d~r = 2π.


