Math 6843 homework

7. $(1 / 31)$ Let F be a boundary component of a manifold M and let $H: M \rightarrow N$ be a homeomorphism, taking F to the boundary circle G of N. Let k be a homeomorphism from $F \rightarrow G$, and suppose that $\left.H\right|_{F}$ is isotopic to k. Show that there is an isotopy from H to a homeomorphism H^{\prime} such that $H^{\prime}=H$ outside a small neighborhood of F and $\left.H^{\prime}\right|_{F}=k$. [Use the fact that F has a collar neighborhood $C=F \times I \subset M$ (which is "small", since a given one can always be replaced by $F \times[0, \epsilon]$) with $F=F \times\{0\}$. Each level H_{t} of the isotopy from H to H^{\prime} will be H on $\overline{M-C}$, and $\left.H_{t}\right|_{F}$ will be the given isotopy from $\left.H\right|_{F}$ to k.]
8. (2/5) [This is nothing important, in fact, I've never seen it in a book - so please don't spend excessive time on it. I just thought it was fun to play with the algebra of connected sum.] Let \mathcal{S} be the monoid of all compact, connected surfaces (up to homeomorphism), with the operation of connected sum. An ideal in \mathcal{S} is a nonempty subset \mathcal{J} such that if $J \in \mathcal{J}$, then $S \# J \in \mathcal{J}$ for all $S \in \mathcal{S}$. For example, the ideal generated by a subset $\left\{J_{1}, \ldots, J_{n}\right\}$ is the set of all $S \# J_{i}$ for $1 \leq i \leq n$ and $S \in \mathcal{S}$.
9. What is the ideal generated by the disk?
10. What is the ideal generated by the projective plane?

For the remaining parts, this might be good preparation: Think about the orientable surfaces in the ideal generated by $F_{2,3}$. What do they look like if you identify $F_{g, b}$ with the point (g, b) in the plane?
3. Show that the ideal generated by $F_{1,2}$ and $F_{2,1}$ cannot be generated by a single element. (I suppose you could say that \mathcal{S} is not a principal ideal monoid.)
4. Find a simple criterion that characterizes the ideals \mathcal{J} for which $\mathcal{S}-\mathcal{J}$ is finite.
5. Show that every ideal in \mathcal{S} is finitely generated (I suppose you could say that \mathcal{S} is a Noetherian monoid).
9. $(2 / 5)$ Let $S=F_{g, b}$ with $\chi\left(F_{g, b}\right)=2-2 g-b<0$, and let $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ be a pants decomposition of S. Show that $n=3 g+b-3$ and that there are exactly $2 g+b-2$ pairs of pants in the decomposition.
10. (2/12) Hyperbolic space can also be modeled on the upper half plane $\{(x, y) \mid y>0\}$; the geodesics with an endpoint at ∞ are vertical lines and the others are semicircles meeting the real line perpendicularly. Draw (some of) the Farey diagram in the upper half plane.

