Math 6843 homework

11. $(2 / 21)$ Let α and β be two curves on $F=F_{2,0}$ which intersect in two points with the same orientations. Let G be a manifold regular neighborhood of $\alpha \cup \beta$, like the neighborhoods considered in the proof that $d(\alpha, \beta) \leq 2 \log _{2}(i(\alpha, \beta))+2$, so that G deformation retracts to $\alpha \cup \beta$.
12. Use the classification of surfaces to verify that G must be a twice-punctured torus $F_{1,2}$. Hint: Show that G has $\chi(G)=-2, g \geq 1$, and $b \geq 1$.
13. Since G is a twice-punctured torus, $\overline{S-G}$ is either an annulus or the union of a once-punctured torus and a disk. On a standard picture of $F_{2,0}$, try to draw an example of each type.
14. $(2 / 21)$ For a (compact, connected, orientable) surface S with nonempty boundary, a pair of curves α and β is said to fill S if every nontrivial curve in S must meet $\alpha \cup \beta$. Equivalently, every component of $S-(\alpha \cup \beta)$ is either an open disk or a half-open annulus $\left([0,1) \times S^{1}\right)$ that contains a boundary circle of S. Try to draw two curves that fill the twice-punctured torus $F_{1,2}$.
15. $(2 / 28)$ Let A be a 2×2 matrix with complex entries.
16. Check that the characteristic polynomial of A is $\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)$.
17. Use the Cayley-Hamilton Theorem to deduce that if $A \in \mathrm{SL}(2, \mathbb{R})$ and $\operatorname{tr}(A)=-1$, then $A^{3}-I=0$, and hence A has order 3 . Obtain similar results when $\operatorname{tr}(A)=0$ and $\operatorname{tr}(A)=1$.
18. Show that if $A \in \mathrm{SL}(2, \mathbb{R})$ and $|\operatorname{tr}(A)|>2$, then A has two real eigenvalues which are reciprocals, one of which has absolute value greater than 1. Deduce that A has infinite order.
19. (2/28) Following the program we used with $\left[\begin{array}{ll}4 & 3 \\ 5 & 4\end{array}\right]$, analyze the action of $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ on the torus. That is:
20. Calculate the eigenvalues $\{\lambda, 1 / \lambda\}$ and associated length 1 eigenvectors v_{λ} and $v_{1 / \lambda}$.
21. Express the standard basis $\left\{e_{1}, e_{2}\right\}$ (that correspond to the curves we call L and M on the torus) in terms of the basis $\left\{v_{\lambda}, v_{1 / \lambda}\right\}$. Use this to redraw the standard fundamental domain (spanned by e_{1} and e_{2}) using the basis $\left\{v_{\lambda}, v_{1 / \lambda}\right\}$.
22. Examine the stable and unstable foliations, first from the viewpoint of the basis $\left\{v_{\lambda}, v_{1 / \lambda}\right\}$. Find their slopes with respect to the standard basis, and try to imagine them on the torus and how the element $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ acts on the torus.
